cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291571 The arithmetic function uhat(n,6,2).

This page as a plain text file.
%I A291571 #7 Aug 30 2017 18:23:53
%S A291571 1,2,3,4,5,6,7,8,9,8,9,6,9,7,9,8,9,6,9,8,7,8,9,6,9,8,9,7,9,6,9,8,9,8,
%T A291571 7,6,9,8,9,8,9,6,9,8,9,8,9,6,7,8,9,8,9,6,9,7,9,8,9,6,9,8,7,8,9,6,9,8,
%U A291571 9,7
%N A291571 The arithmetic function uhat(n,6,2).
%C A291571 uhat(6,4) also generates this sequence.
%H A291571 Bela Bajnok, <a href="https://arxiv.org/abs/1705.07444">Additive Combinatorics: A Menu of Research Problems</a>, arXiv:1705.07444 [math.NT], May 2017. See Table in Section 1.6.4.
%t A291571 delta[r_, k_, d_] := If[r < k, (k - r)*r - (d - 1), If[k < r && r < d, (d - r)*(r - k) - (d - 1), If[k == r && r == d, d - 1, 0]]] uhat[n_, m_, h_] := (dx = Divisors[n]; dmin = n; For[i = 1, i ≤ Length[dx], i++, d = dx[[i]]; k = m - d*Ceiling[m/d] + d; r = h - d*Ceiling[h/d] + d; If[h ≤ Min[k, d - 1], dmin = Min[dmin, n, (h*Ceiling[m/d] - h + 1)*d, h*m - h*h + 1], dmin = Min[dmin, n, h*m - h*h + 1 - delta[r, k, d]]]]; dmin) Table[uhat[n, 6,2], {n, 1, 70}]
%Y A291571 Cf. A289435, A289436, A289437, A289438, A289439, A289440, A289441.
%K A291571 nonn
%O A291571 1,2
%A A291571 _Robert Price_, Aug 26 2017