cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291574 The arithmetic function uhat(n,6,6).

This page as a plain text file.
%I A291574 #7 Jun 11 2025 00:58:15
%S A291574 1,0,-1,0,1,-4,1,0,-1,0,1,-4,1,0,-1,0,1,-4,1,0,-1,0,1,-4,1,0,-1,0,1,
%T A291574 -4,1,0,-1,0,1,-4,1,0,-1,0,1,-4,1,0,-1,0,1,-4,1,0,-1,0,1,-4,1,0,-1,0,
%U A291574 1,-4,1,0,-1,0,1,-4,1,0,-1,0
%N A291574 The arithmetic function uhat(n,6,6).
%H A291574 Bela Bajnok, <a href="https://arxiv.org/abs/1705.07444">Additive Combinatorics: A Menu of Research Problems</a>, arXiv:1705.07444 [math.NT], May 2017. See Table in Section 1.6.4.
%F A291574 Conjectures from _Chai Wah Wu_, Jun 10 2025: (Start)
%F A291574 a(n) = a(n-6) for n > 6.
%F A291574 G.f.: x*(4*x^5 - x^4 + x^2 - 1)/(x^6 - 1). (End)
%t A291574 delta[r_, k_, d_] := If[r < k, (k - r)*r - (d - 1), If[k < r && r < d, (d - r)*(r - k) - (d - 1), If[k == r && r == d, d - 1, 0]]] uhat[n_, m_, h_] := (dx = Divisors[n]; dmin = n; For[i = 1, i ≤ Length[dx], i++, d = dx[[i]]; k = m - d*Ceiling[m/d] + d; r = h - d*Ceiling[h/d] + d; If[h ≤ Min[k, d - 1], dmin = Min[dmin, n, (h*Ceiling[m/d] - h + 1)*d, h*m - h*h + 1], dmin = Min[dmin, n, h*m - h*h + 1 - delta[r, k, d]]]]; dmin) Table[uhat[n, 6, 6], {n, 1, 70}]
%Y A291574 Cf. A289435, A289436, A289437, A289438, A289439, A289440, A289441.
%K A291574 sign
%O A291574 1,6
%A A291574 _Robert Price_, Aug 26 2017