This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291576 #7 Aug 30 2017 18:24:11 %S A291576 1,2,3,4,5,6,7,8,9,10,11,11,11,7,11,8,11,9,11,10,7,11,11,8,11,11,9,7, %T A291576 11,10,11,8,11,11,7,9,11,11,11,8,11,7,11,11,9,11,11,8,7,10,11,11,11,9, %U A291576 11,7,11,11,11,10,11,11,7,8,11,11,11,11,11,7 %N A291576 The arithmetic function uhat(n,7,2). %C A291576 uhat(7,5) also generates this sequence. %H A291576 Bela Bajnok, <a href="https://arxiv.org/abs/1705.07444">Additive Combinatorics: A Menu of Research Problems</a>, arXiv:1705.07444 [math.NT], May 2017. See Table in Section 1.6.4. %t A291576 delta[r_, k_, d_] := If[r < k, (k - r)*r - (d - 1), If[k < r && r < d, (d - r)*(r - k) - (d - 1), If[k == r && r == d, d - 1, 0]]] uhat[n_, m_, h_] := (dx = Divisors[n]; dmin = n; For[i = 1, i ≤ Length[dx], i++, d = dx[[i]]; k = m - d*Ceiling[m/d] + d; r = h - d*Ceiling[h/d] + d; If[h ≤ Min[k, d - 1], dmin = Min[dmin, n, (h*Ceiling[m/d] - h + 1)*d, h*m - h*h + 1], dmin = Min[dmin, n, h*m - h*h + 1 - delta[r, k, d]]]]; dmin) Table[uhat[n, 7, 2], {n, 1, 70}] %Y A291576 Cf. A289435, A289436, A289437, A289438, A289439, A289440, A289441. %K A291576 nonn %O A291576 1,2 %A A291576 _Robert Price_, Aug 26 2017