This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291588 #20 Jun 07 2024 10:49:59 %S A291588 1,2,3,5,4,7,11,6,13,17,8,19,9,10,23,29,14,27,25,16,31,37,12,35,41,22, %T A291588 43,39,20,47,49,32,33,53,26,59,61,15,67,71,28,73,45,34,79,77,38,65,83, %U A291588 46,89,21,40,97,91,44,51,95,58,101,103,18,55,107,52,109 %N A291588 Lexicographically earliest sequence of distinct positive terms such that for any n > 0 and k >= 0, gcd(a(n), a(n + 2^k)) = 1. %C A291588 For a nonempty subset of the natural numbers, say S, let f_S be the lexicographically earliest sequence of distinct positive terms such that, for any n > 0 and s in S, gcd(a(n), a(n + s)) = 1: %C A291588 - f_S is well defined (we can always extend the sequence with a new prime number), %C A291588 - f_S(1) = 1, f_S(2) = 2, f_S(3) = 3, %C A291588 - all prime numbers appear in f_S, in increasing order, %C A291588 - if a(k) = p for some prime p, then k <= p and max_{i=1..k} a(i) = p, %C A291588 - in particular: %C A291588 S f_S %C A291588 --------- --- %C A291588 { 1 } A000027 (the natural numbers) %C A291588 { 2 } A121216 %C A291588 { 1, 2 } A084937 %C A291588 { 1, 2, 3 } A103683 %C A291588 { 1, 2, 3, 4 } A143345 %C A291588 A000027 A008578 (1 alongside the prime numbers) %C A291588 A000079 a (this sequence) %C A291588 - see also Links section for the scatterplots of f_S for certain classical S sets, %C A291588 - likely f_S = f_S' iff S = S'. %C A291588 The motivation for this sequence is to have a sequence f_S for some infinite subset S of the natural numbers. %H A291588 Rémy Sigrist, <a href="/A291588/b291588.txt">Table of n, a(n) for n = 1..20000</a> %H A291588 Rémy Sigrist, <a href="/A291588/a291588.png">Scatterplot of the first 5000 terms of f_A000040 (the prime numbers)</a> %H A291588 Rémy Sigrist, <a href="/A291588/a291588_2.png">Scatterplot of the first 5000 terms of f_A000045 (the Fibonacci numbers)</a> %H A291588 Rémy Sigrist, <a href="/A291588/a291588_1.png">Scatterplot of the first 5000 terms of f_A000142 (the factorial numbers)</a> %H A291588 Rémy Sigrist, <a href="/A291588/a291588_4.png">Scatterplot of the first 5000 terms of f_A000244 (the powers of 3)</a> %H A291588 Rémy Sigrist, <a href="/A291588/a291588_3.png">Scatterplot of the first 5000 terms of f_A000312 (A000312(k) = k^k)</a> %H A291588 Rémy Sigrist, <a href="/A291588/a291588.gp.txt">PARI program for A291588</a> %H A291588 Rémy Sigrist, <a href="/A291588/a291588_5.png">Scatterplot of the first 500000 terms</a> %e A291588 a(1) = 1 is suitable. %e A291588 a(2) must be coprime to a(2 - 2^0) = 1. %e A291588 a(2) = 2 is suitable. %e A291588 a(3) must be coprime to a(3 - 2^0) = 2, a(3 - 2^1) = 1. %e A291588 a(3) = 3 is suitable. %e A291588 a(4) must be coprime to a(4 - 2^0) = 3, a(4 - 2^1) = 2. %e A291588 a(4) = 5 is suitable. %e A291588 a(5) must be coprime to a(5 - 2^0) = 5, a(5 - 2^1) = 3, a(5 - 2^2) = 1. %e A291588 a(5) = 4 is suitable. %e A291588 a(6) must be coprime to a(6 - 2^0) = 4, a(6 - 2^1) = 5, a(6 - 2^2) = 2. %e A291588 a(6) = 7 is suitable. %e A291588 a(7) must be coprime to a(7 - 2^0) = 7, a(7 - 2^1) = 4, a(7 - 2^2) = 3. %e A291588 a(7) = 11 is suitable. %o A291588 (PARI) \\ See Links section. %Y A291588 Cf. A000027, A000040, A000045, A000079, A000142, A000244, A000312, A008578, A084937, A103683, A121216, A143345. %K A291588 nonn %O A291588 1,2 %A A291588 _Rémy Sigrist_, Aug 27 2017