A291657 Primes p such that p is a primitive root modulo prime(p).
2, 3, 7, 11, 13, 41, 71, 79, 83, 107, 109, 131, 139, 157, 163, 173, 179, 191, 211, 223, 229, 263, 271, 277, 293, 311, 313, 317, 337, 353, 359, 367, 373, 389, 419, 431, 439, 449, 457, 463, 479, 521, 547, 569, 577, 593, 607, 641, 661, 709, 719, 727, 743, 757, 761, 769, 787, 811, 823, 827
Offset: 1
Keywords
Examples
a(1) = 2 since the first prime 2 is a primitive root modulo prime(2) = 3. a(2) = 3 since the prime 3 is a primitive root modulo prime(3) = 5.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, New observations on primitive roots modulo primes, arXiv:1405.0290 [math.NT], 2014.
Programs
-
Mathematica
p[n_]:=p[n]=Prime[n]; n=0;Do[Do[If[Mod[p[k]^(Part[Divisors[p[p[k]]-1],i])-1,p[p[k]]]==0,Goto[aa]],{i,1,Length[Divisors[p[p[k]]-1]]-1}]; n=n+1;Print[n," ",p[k]];Label[aa],{k,1,145}]
Comments