cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291616 Carmichael numbers k such that 2^d == 2^(k/d) (mod k) for all d|k.

This page as a plain text file.
%I A291616 #23 Apr 22 2024 08:12:22
%S A291616 1105,294409,852841,3828001,17098369,118901521,150846961,172947529,
%T A291616 186393481,200753281,686059921,771043201,1001152801,1207252621,
%U A291616 1269295201,1299963601,1632785701,1772267281,2301745249,4215885697,4562359201,4765950001,4897161361
%N A291616 Carmichael numbers k such that 2^d == 2^(k/d) (mod k) for all d|k.
%C A291616 Intersection of A002997 and A291601.
%H A291616 Amiram Eldar, <a href="/A291616/b291616.txt">Table of n, a(n) for n = 1..10000</a> (calculated using data from Claude Goutier; terms 1..3648 from Max Alekseyev)
%H A291616 Claude Goutier, <a href="http://www-labs.iro.umontreal.ca/~goutier/OEIS/A055553/">Compressed text file carm10e22.gz containing all the Carmichael numbers up to 10^22</a>.
%H A291616 <a href="/index/Ca#Carmichael">Index entries for sequences related to Carmichael numbers</a>.
%e A291616 Carmichael number 294409 = 37*73*109 is a term because 2^37 == 2^(73*109) (mod 294409), 2^73 == 2^(37*109) (mod 294409), 2^109 == 2^(37*73) (mod 294409).
%Y A291616 Cf. A002997, A291601, A291612.
%K A291616 nonn
%O A291616 1,1
%A A291616 _Max Alekseyev_, _Thomas Ordowski_, _Altug Alkan_, Aug 28 2017