cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291645 Expansion of the series reversion of -1 + Product_{k>=1} (1 + x^(k^2)).

This page as a plain text file.
%I A291645 #6 Feb 16 2025 08:33:50
%S A291645 1,0,0,-1,-1,0,4,9,4,-23,-78,-78,132,694,1088,-443,-6169,-13452,-4646,
%T A291645 52247,155891,143796,-391672,-1715015,-2481013,2107735,17836000,
%U A291645 35704800,3037215,-172386166,-465009936,-338007604,1487272659,5624864403,7125599375,-10208041482
%N A291645 Expansion of the series reversion of -1 + Product_{k>=1} (1 + x^(k^2)).
%C A291645 Reversion of g.f. (with constant term omitted) for A033461.
%H A291645 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H A291645 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SeriesReversion.html">Series Reversion</a>
%H A291645 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A291645 G.f. A(x) satisfies: -1 + Product_{k>=1} (1 + A(x)^(k^2)) = x.
%t A291645 nmax = 36; Rest[CoefficientList[InverseSeries[Series[-1 + Product[1 + x^k^2, {k, 1, nmax}], {x, 0, nmax}], x], x]]
%Y A291645 Cf. A007312, A033461, A050393, A291489.
%K A291645 sign
%O A291645 1,7
%A A291645 _Ilya Gutkovskiy_, Aug 28 2017