cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291647 Expansion of Product_{k>=1} (1 + x^prime(k))^prime(k).

This page as a plain text file.
%I A291647 #4 Aug 28 2017 20:17:49
%S A291647 1,0,2,3,1,11,3,20,21,20,64,35,112,117,160,269,284,477,598,819,1116,
%T A291647 1495,1899,2718,3389,4596,6121,7627,10460,13128,17350,22506,28696,
%U A291647 37063,47779,60249,78642,98783,126058,160758,200795,257750,321768,407930,511526,640636,802816,1005618,1252820,1567454,1946162
%N A291647 Expansion of Product_{k>=1} (1 + x^prime(k))^prime(k).
%C A291647 Number of partitions of n into distinct prime parts, where prime(k) different parts of size prime(k) are available (2a, 2b, 3a, 3b, 3c, ...).
%H A291647 <a href="/index/Par#part">Index entries for related partition-counting sequences</a>
%F A291647 G.f.: Product_{k>=1} (1 + x^A000040(k))^A000040(k).
%e A291647 a(6) = 3 because we have [3a, 3b], [3a, 3c] and [3b, 3c].
%t A291647 nmax = 50; CoefficientList[Series[Product[(1 + x^Prime[k])^Prime[k], {k, 1, nmax}], {x, 0, nmax}], x]
%Y A291647 Cf. A000040, A000586, A007441, A026007, A061151, A061152, A219224, A262736.
%K A291647 nonn
%O A291647 0,3
%A A291647 _Ilya Gutkovskiy_, Aug 28 2017