This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291659 #38 Sep 08 2022 08:46:19 %S A291659 2,3,6,7,47,50,57,59,110,353,812,837,843,871,939,1385,2192,4257,4892, %T A291659 5011,8507,10597,11862,29579,39198 %N A291659 Numbers k such that (107*10^k + 13)/3 is prime. %C A291659 For k > 2, the numbers with the digits 35 followed by k-2 occurrences of the digit 6 followed by the digits 71 is prime. %C A291659 The next term a(24) > 20000. - _Robert G. Wilson v_, Sep 06 2017 %C A291659 a(26) > 10^5. - _Robert Price_, Nov 05 2017 %e A291659 2 is in the sequence because (107*10^2 + 13)/3 = 3571; that is a prime. %e A291659 6 is in the sequence because (107*10^6 + 13)/3 = 35666671; that is a prime. %e A291659 a(1) = 2, 3571; %e A291659 a(2) = 3, 35671; %e A291659 a(3) = 6, 35666671; %e A291659 a(4) = 7, 356666671; %e A291659 a(5) = 47, 3566666666666666666666666666666666666666666666671; %e A291659 a(6) = 50, 3566666666666666666666666666666666666666666666666671; %p A291659 select(k -> isprime((107*10^k + 13)/3), [seq(k, k=1..7000)]); %t A291659 Select[Range[0, 5000], PrimeQ[(107*10^# + 13)/3] &] %o A291659 (Magma) [k : k in [0..3000] | IsPrime((107*10^k+13) div 3)]; %o A291659 (PARI) for(n=0,8e3, if(ispseudoprime((107*10^n+13) \ 3), print1(n, ", "))); %Y A291659 Cf. A268448, A269303, A270339, A270613, A270831, A270890, A270929, A281171, A290962, A290964, A291609, A291611. %K A291659 nonn,more %O A291659 1,1 %A A291659 _K. D. Bajpai_, Aug 31 2017 %E A291659 a(24)-a(25) from _Robert Price_, Nov 05 2017