cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291667 Expansion of Product_{k>=1} ((1 + x^(k^2)) / (1 - x^(k^2)))^k.

This page as a plain text file.
%I A291667 #10 Sep 02 2017 03:48:10
%S A291667 1,2,2,2,6,10,10,10,18,32,38,38,50,86,110,110,134,206,272,290,342,466,
%T A291667 610,682,770,1012,1310,1492,1654,2130,2698,3066,3410,4210,5310,6106,
%U A291667 6812,8078,10118,11750,13006,15198,18654,21810,24178,28092,33682,39330,43866
%N A291667 Expansion of Product_{k>=1} ((1 + x^(k^2)) / (1 - x^(k^2)))^k.
%C A291667 Convolution of A285047 and A281790.
%H A291667 Vaclav Kotesovec, <a href="/A291667/b291667.txt">Table of n, a(n) for n = 0..10000</a>
%F A291667 log(a(n)) ~ Pi*sqrt(n/2).
%t A291667 nmax = 60; CoefficientList[Series[Product[((1+x^(k^2))/(1-x^(k^2)))^k, {k, 1, nmax}], {x, 0, nmax}], x]
%Y A291667 Cf. A001156, A033461, A285047, A281790, A291666.
%K A291667 nonn
%O A291667 0,2
%A A291667 _Vaclav Kotesovec_, Aug 29 2017