This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291678 #20 Apr 01 2018 05:52:37 %S A291678 1,1,0,1,1,0,1,2,0,0,1,3,1,-1,0,1,4,3,-2,0,0,1,5,6,-2,-2,1,0,1,6,10,0, %T A291678 -6,2,1,0,1,7,15,5,-11,0,5,-1,0,1,8,21,14,-15,-8,12,0,-2,0,1,9,28,28, %U A291678 -15,-24,18,9,-8,0,0,1,10,36,48,-7,-48,15,32,-15,-6,2 %N A291678 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of k-th power of continued fraction 1 + x/(1 + x^2/(1 + x^3/(1 + x^4/(1 + x^5/(1 + ...))))). %H A291678 Seiichi Manyama, <a href="/A291678/b291678.txt">Antidiagonals n = 0..139, flattened</a> %F A291678 G.f. of column k: Product_{j>=1} ((1 - x^(5*j-2))*(1 - x^(5*j-3)) / ((1 - x^(5*j-1))*(1 - x^(5*j-4))))^k. %e A291678 Square array begins: %e A291678 1, 1, 1, 1, 1, ... %e A291678 0, 1, 2, 3, 4, ... %e A291678 0, 0, 1, 3, 6, ... %e A291678 0, -1, -2, -2, 0, ... %e A291678 0, 0, -2, -6, -11, ... %Y A291678 Columns k=0..4 give A000007, A003823, A285442, A285443, A285444. %Y A291678 Rows n=0..1 give A000012, A001477. %Y A291678 Main diagonal gives A291679. %Y A291678 Antidiagonal sums give A302016. %Y A291678 Cf. A286509. %K A291678 sign,tabl %O A291678 0,8 %A A291678 _Seiichi Manyama_, Aug 29 2017