A291692 Expansion of Product_{k>=1} (1+x^(k^3))^(k^3).
1, 1, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 28, 28, 0, 0, 0, 0, 0, 0, 56, 56, 0, 27, 27, 0, 0, 0, 70, 70, 0, 216, 216, 0, 0, 0, 56, 56, 0, 756, 756, 0, 0, 0, 28, 28, 0, 1512, 1512, 0, 351, 351, 8, 8, 0, 1890, 1890, 0, 2808, 2808, 65, 65, 0, 1512, 1512, 0
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
nmax = 100; CoefficientList[Series[Product[(1 + x^(k^3))^(k^3), {k, 1, nmax}], {x, 0, nmax}], x] nmax = 100; s = 1 + x; Do[s *= Sum[Binomial[k^3, j]*x^(j*k^3), {j, 0, Floor[nmax/k^3] + 1}]; s = Select[Expand[s], Exponent[#, x] <= nmax &];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax]
Formula
a(n) ~ exp(7*((2^(4/3)-1) * Gamma(1/3) * Zeta(7/3))^(3/7) * n^(4/7) / (2^(12/7) * 3^(9/7))) * ((2^(4/3)-1) * Gamma(1/3) * Zeta(7/3))^(3/14) / (2^(5/14) * 3^(1/7) * sqrt(7*Pi) * n^(5/7)).
Comments