cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291694 Array of Markov triples (x,y,z) sorted by z, read by rows.

This page as a plain text file.
%I A291694 #16 Feb 16 2022 07:39:18
%S A291694 1,1,1,1,1,2,1,2,5,1,5,13,2,5,29,1,13,34,1,34,89,2,29,169,5,13,194,1,
%T A291694 89,233,5,29,433,1,233,610,2,169,985,13,34,1325,1,610,1597,5,194,2897,
%U A291694 1,1597,4181,2,985,5741,5,433,6466,13,194,7561,34,89,9077,1,4181,10946,29,169,14701
%N A291694 Array of Markov triples (x,y,z) sorted by z, read by rows.
%C A291694 The positive integers x, y, z satisfy the Diophantine equation x^2 + y^2 + z^2 = 3*x*y*z, 1 <= x <= y <= z.
%D A291694 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.31.3 Markov-Hurwitz Equation, p. 200.
%H A291694 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MarkovNumber.html">Markov Number</a>.
%H A291694 Wikipedia, <a href="https://en.wikipedia.org/wiki/Markov_number">Markov number</a>.
%e A291694 The array of Markov triples begins:
%e A291694   (1,  1,  1),
%e A291694   (1,  1,  2),
%e A291694   (1,  2,  5),
%e A291694   (1,  5, 13),
%e A291694   (2,  5, 29),
%e A291694   (1, 13, 34),
%e A291694   ...
%t A291694 triples = 30; depth0 = 10 (* adjust depth according to message after first run *) ; Clear[zz, fx, fy]; fx[1] = fy[1] = fx[2] = fy[2] = fx[5] = 1;
%t A291694 fy[5] = 2; zz[n_] := zz[n] = Module[{f, x, y, z}, f[] = {1, 2, 5}; f[ud___, u(*up*)] := f[ud, u] = Module[{g = f[ud]}, x = g[[1]]; y = g[[3]]; z = 3*g[[1]]*g[[3]] - g[[2]]; fx[z] = x; fy[z] = y; {x, y, z}]; f[ud___, d(*down*)] := f[ud, d] = Module[{g = f[ud]}, x = g[[2]]; y = g[[3]]; z = 3*g[[2]]*g[[3]] - g[[1]]; fx[z] = x; fy[z] = y; {x, y, z}]; f @@@ Tuples[{u, d}, n] // Flatten // Union // PadRight[#, triples]&]; zz[n = depth0]; zz[n++]; While[zz[n] != zz[n - 1], n++]; Print["depth = n = ", n]; xyz = {fx[#], fy[#], #} & /@ zz[n]; Flatten[xyz]
%o A291694 (PARI) N=5000;
%o A291694 for(k=1, N, for(j=1, k, for(i=1, j, if(i*j>k, break); if(i^2+j^2+k^2==3*i*j*k, print1(i, ", ", j, ", ", k, ", "))))); \\ _Seiichi Manyama_, Feb 16 2022
%Y A291694 Cf. A002559 (main entry for this sequence), A178444, A256395, A261613, A351372.
%K A291694 nonn,tabf
%O A291694 1,6
%A A291694 _Jean-François Alcover_, Aug 30 2017