A381579 The Chung-Graham representation of n: representation of n in base of even-indexed Fibonacci numbers.
0, 1, 2, 10, 11, 12, 20, 21, 100, 101, 102, 110, 111, 112, 120, 121, 200, 201, 202, 210, 211, 1000, 1001, 1002, 1010, 1011, 1012, 1020, 1021, 1100, 1101, 1102, 1110, 1111, 1112, 1120, 1121, 1200, 1201, 1202, 1210, 1211, 2000, 2001, 2002, 2010, 2011, 2012, 2020, 2021
Offset: 0
Examples
a(3) = 10 since 3 = 1 * 3 + 0 * 1 = 3 * Fibonacci(2*2) + 0 * Fibonacci(2*1). a(10) = 102 since 10 = 1 * 8 + 0 * 3 + 2 * 1 = 1 * Fibonacci(2*3) + 0 * Fibonacci(2*2) + 2 * Fibonacci(2*1).
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
- Rob Burns, Chung-Graham and Zeckendorf representations, arXiv:2502.18870 [math.NT], 2025.
- Hung Viet Chu, Aney Manish Kanji, and Zachary Louis Vasseur, Fixed-Term Decompositions Using Even-Indexed Fibonacci Numbers, arXiv:2501.03231 [math.GM], 2024.
- F. R. K. Chung and R. L. Graham, On irregularities of distribution of real sequences, Proc. Nat. Acad. Sci. USA, Vol. 78, No. 7 (1981), p. 4001.
- F. R. K. Chung and R. L. Graham, On irregularities of distribution, Finite and Infinite Sets, Colloquia Mathematica Societatis János Bolyai, Vol. 37, North-Holland, 1984, pp. 181-222; alternative link.
Programs
-
Mathematica
f[n_] := f[n] = Fibonacci[2*n]; a[n_] := Module[{s = 0, m = n, k}, While[m > 0, k = 1; While[m > f[k], k++]; If[m < f[k], k--]; If[m >= 2*f[k], s += 2*10^(k-1); m -= 2*f[k], s += 10^(k-1); m -= f[k]]]; s]; Array[a, 50, 0]
-
PARI
m = 20; fvec = vector(m, i, fibonacci(2*i)); f(n) = if(n <= m, fvec[n], fibonacci(2*n)); a(n) = {my(s = 0, m = n, k); while(m > 0, k = 1; while(m > f(k), k++); if(m < f(k), k--); if(m >= 2*f(k), s += 2*10^(k-1); m -= 2*f(k), s += 10^(k-1); m -= f(k))); s;}
Comments