cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291721 Expansion of Product_{k>=1} ((1 + x^(k^3))/(1 - x^(k^3)))^(k^3).

This page as a plain text file.
%I A291721 #8 Sep 02 2017 04:05:59
%S A291721 1,2,2,2,2,2,2,2,18,34,34,34,34,34,34,34,162,290,290,290,290,290,290,
%T A291721 290,978,1666,1666,1720,1774,1774,1774,1774,4590,7406,7406,8270,9134,
%U A291721 9134,9134,9134,18558,27982,27982,34894,41806,41806,41806,41806,68814,95822
%N A291721 Expansion of Product_{k>=1} ((1 + x^(k^3))/(1 - x^(k^3)))^(k^3).
%C A291721 Convolution of A291692 and A291720.
%H A291721 Vaclav Kotesovec, <a href="/A291721/b291721.txt">Table of n, a(n) for n = 0..10000</a>
%F A291721 log(a(n)) ~ 7 * ((2^(7/3)-1) * Gamma(1/3) * Zeta(7/3))^(3/7) * n^(4/7) / (2^(12/7) * 3^(9/7)).
%t A291721 nmax = 100; CoefficientList[Series[Product[((1 + x^(k^3))/(1 - x^(k^3)))^(k^3), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A291721 Cf. A156616, A291666, A291692, A291720.
%K A291721 nonn
%O A291721 0,2
%A A291721 _Vaclav Kotesovec_, Aug 30 2017