This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291728 #15 Nov 23 2024 08:28:53 %S A291728 1,2,4,9,17,35,70,142,285,576,1160,2340,4716,9510,19171,38653,77926, %T A291728 157110,316747,638599,1287479,2595698,5233196,10550681,21271280, %U A291728 42885152,86460984,174314476,351436368,708532813,1428476905,2879960190,5806303628,11706120825 %N A291728 p-INVERT of (1,0,1,0,0,0,0,...), where p(S) = 1 - S - S^2. %C A291728 Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). %C A291728 In the following guide to p-INVERT sequences using s = (1,0,1,0,0,0,0,...) = A154272, in some cases t(1,0,1,0,0,0,0,...) is a shifted (or differently indexed) version of the indicated sequence: %C A291728 *** %C A291728 p(S) t(1,0,1,0,0,0,0,...) %C A291728 1 - S A000930 (Narayana's cows sequence) %C A291728 1 - S^2 A002478 (except for 0's) %C A291728 1 - S^3 A291723 %C A291728 1 - S^5 A291724 %C A291728 (1 - S)^2 A291725 %C A291728 (1 - S)^3 A291726 %C A291728 (1 - S)^4 A291727 %C A291728 1 - S - S^2 A291728 %C A291728 1 - 2S - S^2 A291729 %C A291728 1 - 2S - 2S^2 A291730 %C A291728 (1 - 2S)^2 A291732 %C A291728 (1 - S)(1 - 2S) A291734 %C A291728 1 - S - S^3 A291735 %C A291728 1 - S^2 - S^3 A291736 %C A291728 1 - S - S^2 - S^3 A291737 %C A291728 1 - S - S^4 A291738 %C A291728 1 - S^3 - S^6 A291739 %C A291728 (1 - S)(1 - S^2) A291740 %C A291728 (1 - S)(1 + S^2) A291741 %H A291728 Clark Kimberling, <a href="/A291728/b291728.txt">Table of n, a(n) for n = 0..1000</a> %H A291728 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,1,2,0,1). %F A291728 G.f.: (-1 - x - x^2 - 2 x^3 - x^5)/(-1 + x + x^2 + x^3 + 2 x^4 + x^6). %F A291728 a(n) = a(n-1) + a(n-2) + a(n-3) + 2*a(n-4) + a(n-6) for n >= 7. %t A291728 z = 60; s = x + x^3; p = 1 - s - s^2; %t A291728 Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A154272 *) %t A291728 Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291728 *) %Y A291728 Cf. A154272, A290890, A291000, A291382, A291219, A291382. %K A291728 nonn,easy %O A291728 0,2 %A A291728 _Clark Kimberling_, Sep 08 2017