This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291732 #4 Sep 11 2017 20:04:49 %S A291732 4,12,36,104,288,780,2080,5472,14240,36736,94080,239440,606144, %T A291732 1527360,3833024,9584768,23890944,59380160,147207168,364084224, %U A291732 898569216,2213388288,5442392064,13360097536,32746992640,80153705472,195933828096,478374127616 %N A291732 p-INVERT of (1,0,1,0,0,0,0,...), where p(S) = (1 - 2 S)^2. %C A291732 Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). %C A291732 See A291728 for a guide to related sequences. %H A291732 Clark Kimberling, <a href="/A291732/b291732.txt">Table of n, a(n) for n = 0..1000</a> %H A291732 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (4, -4, 4, -8, 0, -4) %F A291732 G.f.: -((4 (1 + x^2) (-1 + x + x^3))/(-1 + 2 x + 2 x^3)^2). %F A291732 a(n) = 4*a(n-1) - 4*a(n-2) + 4*a(n-3) - 8*a(n-4) - 4*a(n-6) for n >= 7. %t A291732 z = 60; s = x + x^3; p = (1 - 2 s)^2; %t A291732 Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A154272 *) %t A291732 u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291732 *) %t A291732 u / 4 (*A291733) %Y A291732 Cf. A154272, A291728, A291733. %K A291732 nonn,easy %O A291732 0,1 %A A291732 _Clark Kimberling_, Sep 11 2017