A291740 p-INVERT of (1,0,1,0,0,0,0,...), where p(S) = (1 - S)(1 - S^2).
1, 2, 3, 7, 9, 18, 25, 47, 65, 118, 165, 290, 408, 702, 992, 1677, 2379, 3966, 5643, 9300, 13266, 21654, 30954, 50116, 71770, 115388, 165504, 264475, 379863, 603792, 868267, 1373621, 1977413, 3115222, 4488843, 7045205, 10160427, 15892794, 22937999, 35769390
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 2, -3, 1, -3, 0, -1)
Programs
-
Mathematica
z = 60; s = x + x^3; p = (1 - s) (1 - s^2); Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A154272 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291740 *)
-
PARI
x='x+O('x^99); Vec(((1+x^2)*(1+x-x^2+x^3-2*x^4-x^6))/((-1+x+x^3)^2*(1+x+x^3))) \\ Altug Alkan, Oct 04 2017
Formula
G.f.: -(((1 + x^2) (-1 - x + x^2 - x^3 + 2 x^4 + x^6))/((-1 + x + x^3)^2 (1 + x + x^3))).
a(n) = a(n-1) + a(n-2) + 2*a(n-4) - 3*a(n-5) + a(n-6) - 3*a(n-7) - a(n-9) for n >= 10.
Comments