A291741 p-INVERT of (1,0,1,0,0,0,0,...), where p(S) = (1 - S)(1 + S^2).
1, 0, 1, 1, 1, 4, 5, 7, 11, 12, 19, 30, 42, 68, 98, 137, 205, 292, 429, 644, 936, 1380, 2024, 2936, 4316, 6324, 9260, 13625, 19949, 29216, 42841, 62701, 91917, 134784, 197485, 289547, 424331, 621708, 911255, 1335378, 1957086, 2868620, 4203998, 6161329
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, -1, 2, -2, 3, -1, 3, 0, 1)
Programs
Formula
G.f.: -(((1 + x^2) (1 + x + x^2) (1 - 2 x + 2 x^2 - x^3 + x^4))/((-1 + x + x^3) (1 + x^2 + 2 x^4 + x^6))).
a(n) = a(n-1) - a(n-2) + 2*a(n-3) - 2*a(n-4) + 3*a(n-5) - a(n-6) + 3*a(n-7) + a(n-9) for n >= 10.
Comments