cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291742 Number of maximal independent vertex sets in the n-Fibonacci cube graph.

This page as a plain text file.
%I A291742 #18 Feb 16 2025 08:33:51
%S A291742 2,2,3,7,22,123,2281,221074,300492228
%N A291742 Number of maximal independent vertex sets in the n-Fibonacci cube graph.
%C A291742 The size of the smallest set, the independent domination number, is given by A291297.
%H A291742 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MaximalIndependentVertexSet.html">Maximal Independent Vertex Set</a>
%H A291742 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FibonacciCubeGraph.html">Fibonacci Cube Graph</a>
%H A291742 Wikipedia, <a href="https://en.wikipedia.org/wiki/Fibonacci_cube">Fibonacci cube</a>
%e A291742 Case n=1: The vertices are 0, 1. Each singleton vertex set is a maximal independent set, so a(1) = 2.
%e A291742 Case n=2: The vertices are 00, 01, 10. Maximal independent sets are {00} and {01, 10}, so a(2) = 2.
%e A291742 Case n=3: The vertices are 000, 001, 010, 100, 101. Maximal independent sets are {000, 101}, {010, 101}, {001, 010, 100}, so a(3)=3.
%o A291742 (Python)
%o A291742 from itertools import combinations, product
%o A291742 from networkx import empty_graph, find_cliques
%o A291742 def A291742(n):
%o A291742     v = tuple(int(q,2) for q in (''.join(p) for p in product('01',repeat=n)) if '11' not in q)
%o A291742     G = empty_graph(v)
%o A291742     e = tuple((a,b) for a, b in combinations(v,2) if (lambda m: (m&-m)^m if m else 1)(a^b))
%o A291742     G.add_edges_from(e)
%o A291742     return sum(1 for c in find_cliques(G)) # _Chai Wah Wu_, Jan 14 2024
%Y A291742 Cf. A291297, A291573.
%K A291742 nonn,more
%O A291742 1,1
%A A291742 _Andrew Howroyd_, Aug 30 2017
%E A291742 a(9) from _Pontus von Brömssen_, Mar 06 2020