This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291793 #52 Jul 09 2025 04:45:19 %S A291793 2,6,6,6,0,10,28,6,10,6,6,6,0,0,6,28,10,6,10,6,6,0,6,6,0,6,6,6,6,6,6, %T A291793 52,6,6,6,6,6,6,6,6,6,6,6,28,6,0,0,28,6,6,6,6,6,0,6,6,6,10,6,6,6,6,0, %U A291793 6,0,6,6,6,6,0,6,6,6,0,6,6,6,0,10,0,10,6,6 %N A291793 Period of orbit of Post's tag system applied to the word (100)^n (version 2), or -1 if the orbit increases without limit. %C A291793 Post's tag system maps a word w over {0,1} to w', where if w begins with 0, w' is obtained by appending 00 to w and deleting the first three letters, or if w begins with 1, w' is obtained by appending 1101 to w and deleting the first three letters. %C A291793 The empty word is included in the count. %C A291793 Here, following Asveld, a(n)=0 if the orbit ends at the empty word. On the other hand, Shallit defines a(n) to be 1 if that happens, which gives a different sequence, A284121. %C A291793 From _A.H.M. Smeets_, Jul 16 2020: (Start) %C A291793 In general a tag as defined by Emil Leon Post, is given by a 4-tuple (Sigma,AF,n,w0), where Sigma is some (nonempty) alphabet, AF is the associated function (sometimes also called set of production rules) AF: Sigma -> Sigma*, n is the deletion number and w0 the initial string. %C A291793 Here, the period lengths a(n) refer to the tags ({0,1},{(0,00),(1,1101)},3,100^n). %C A291793 a(n) is an even number. Proof: for each cycle the number of associations (productions) 0 -> 00 must equal the number of associations (productions) 1 -> 1101 applied within a cycle. (End) %H A291793 Lars Blomberg, <a href="/A291793/b291793.txt">Table of n, a(n) for n = 1..6075</a> (corrected for n=165 by _A.H.M. Smeets_) %H A291793 Peter R. J. Asveld, <a href="http://doc.utwente.nl/66184/1/1988m20.pdf">On a Post's System of Tag</a>. Bulletin of the EATCS 36 (1988), 96-102. %H A291793 Lars Blomberg, <a href="/A291793/a291793.png">Histogram over non-zero terms</a> %H A291793 Emil L. Post, <a href="http://www.lib.ysu.am/articles_art/63062f3ed126193beb426becc0fbbe33.pdf">Formal reductions of the general combinatorial decision problem.</a>, American Journal of Mathematics, Vol. 65, No. 2 (Apr., 1943), pp. 197-215. %H A291793 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TagSystem.html">Tag System</a> %e A291793 For n = 2 the orbit of (100)^2 = 100100 consists of a preperiod of length 15, followed by a periodic portion of length 6. %o A291793 (Python) %o A291793 def step(w): %o A291793 i = 0 %o A291793 while w[0] != alfabet[i]: %o A291793 i = i+1 %o A291793 w = w+suffix[i] %o A291793 return w[n:len(w)] %o A291793 alfabet, suffix, n, ws, w0, m = "01", ["00","1101"], 3, "100", "", 0 %o A291793 while m < 83: %o A291793 w0, m = w0+ws, m+1 %o A291793 w, ww, i, a = w0, w0, 0, 0 %o A291793 while w != "" and a == 0: %o A291793 w, i = step(w), i+1 %o A291793 if i%1000 == 0: %o A291793 ww = w %o A291793 else: %o A291793 if w == ww or w == "": %o A291793 if w != "": %o A291793 a = i%1000 %o A291793 print(m,a) # _A.H.M. Smeets_, Jul 16 2020 %Y A291793 Cf. A284116, A284119, A291792, A284121, A336287, A336327. %K A291793 nonn %O A291793 1,1 %A A291793 _N. J. A. Sloane_, Sep 04 2017, based on _Jeffrey Shallit_'s A284121 %E A291793 a(50)-a(83) from _Lars Blomberg_, Sep 08 2017