This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291814 #9 Nov 23 2024 08:28:49 %S A291814 1,1,7,67,769,10009,143359,2218255,36625657,639659737,11741022235, %T A291814 225390779647,4508109360985,93665093491381,2016669357747667, %U A291814 44905700922069463,1032419000661778213,24472819932819733957,597384952530618840715,15000294032677574361955,387082666821619977435277,10256260095368150955828565,278811213889895147327704519,7770474960716476086765483619 %N A291814 G.f. A(x) satisfies: A(x - 3*x*A(x)) = x - 2*x*A(x). %F A291814 G.f. A(x) also satisfies: %F A291814 (1) A(x) = (1/3)*Series_Reversion( x - 3*x*A(x) ) + 2*x/3. %F A291814 (2) A( 3*A(x) - 2*x ) = (A(x) - x) / (3*A(x) - 2*x). %F A291814 a(n) = Sum_{k=0..n-1} A291820(n, k) * 3^k. %e A291814 G.f.: A(x) = x + x^2 + 7*x^3 + 67*x^4 + 769*x^5 + 10009*x^6 + 143359*x^7 + 2218255*x^8 + 36625657*x^9 + 639659737*x^10 + 11741022235*x^11 + 225390779647*x^12 +... %e A291814 such that A(x - 3*x*A(x)) = x - 2*x*A(x). %e A291814 RELATED SERIES. %e A291814 A(x - 3*x*A(x)) = x - 2*x^2 - 2*x^3 - 14*x^4 - 134*x^5 - 1538*x^6 - 20018*x^7 +... %e A291814 which equals x - 2*x*A(x). %e A291814 Series_Reversion( x - 3*x*A(x) ) = x + 3*x^2 + 21*x^3 + 201*x^4 + 2307*x^5 + 30027*x^6 + 430077*x^7 + 6654765*x^8 +... %e A291814 which equals 3*A(x) - 2*x. %e A291814 A( 3*A(x) - 2*x ) = x + 4*x^2 + 34*x^3 + 382*x^4 + 5038*x^5 + 74134*x^6 + 1184650*x^7 + 20224990*x^8 + 364994554*x^9 + 6911857450*x^10 + 136622440786*x^11 + 2807805653098*x^12 +... %e A291814 which equals (A(x) - x) / (3*A(x) - 2*x). %o A291814 (PARI) {a(n) = my(A=x); for(i=1, n, A = (1/3)*serreverse( x - 3*x*A +x*O(x^n) ) + 2*x/3 ); polcoeff(A, n)} %o A291814 for(n=1, 30, print1(a(n), ", ")) %Y A291814 Cf. A291820, A291813, A291815, A291816, A291817, A291818, A291819, A276358, A291743, A291744. %K A291814 nonn %O A291814 1,3 %A A291814 _Paul D. Hanna_, Sep 02 2017