This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291839 #10 Sep 06 2017 04:07:41 %S A291839 3,5,7,9,11,14,16,18,21,23,25,27,30,32,34,37,39,41,43,46,48,50,52,55, %T A291839 57,59,61,64,66,68,71,73,75,77,80,82,84,86,89,91,93,95,98,100,102,104, %U A291839 107,109,111,114,116,118,120,123,125,127,129,132 %N A291839 a(n) is the minimal position at which the maximal value of row n appears in row n of triangle A100960. %H A291839 Gheorghe Coserea, <a href="/A291839/b291839.txt">Table of n, a(n) for n = 3..126</a> %H A291839 E. A. Bender, Z. Gao and N. C. Wormald, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v9i1r43">The number of labeled 2-connected planar graphs</a>, Electron. J. Combin., 9 (2002), #R43. %F A291839 a(n) ~ c*n + o(sqrt(n)), where c=2.26287583256262... (A291840). %F A291839 T(n, a(n)) = max {T(n,k), n <= k <= 3*(n-2) }, where T(n,k) is defined by A100960. %o A291839 (PARI) %o A291839 Q(n,k) = { \\ c-nets with n-edges, k-vertices %o A291839 if (k < 2+(n+2)\3 || k > 2*n\3, return(0)); %o A291839 sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2* %o A291839 (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) - %o A291839 4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1)))); %o A291839 }; %o A291839 A100960_ser(N) = { %o A291839 my(x='x+O('x^(3*N+1)), t='t+O('t^(N+4)), %o A291839 q=t*x*Ser(vector(3*N+1, n, Polrev(vector(min(N+3, 2*n\3), k, Q(n,k)),'t))), %o A291839 d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1), %o A291839 g2=intformal(t^2/2*((1+d)/(1+x)-1))); %o A291839 serlaplace(Ser(vector(N, n, subst(polcoeff(g2, n,'t),'x,'t)))*'x); %o A291839 }; %o A291839 A291839_seq(N) = { %o A291839 my(g2=apply(Vecrev, Vec(A100960_ser(N+2))), m=apply(vecmax, g2)); %o A291839 apply(v->vecmin(v)-1, vector(#g2, k, select(v->v==m[k], g2[k], 1))); %o A291839 }; %o A291839 A291839_seq(22) %Y A291839 Cf. A100960, A291837. %K A291839 nonn %O A291839 3,1 %A A291839 _Gheorghe Coserea_, Sep 05 2017