This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291844 #28 Nov 17 2018 15:12:28 %S A291844 1,1,4,2,29,23,274,292,36,3145,4068,994,16,42294,62861,22250,1512, %T A291844 651227,1075562,484840,61027,1060,11295242,20275944,10867381,1977879, %U A291844 93188,280,217954807,418724047,255929070,59896915,4823178,80632,4632600152,9418874022,6387031115,1798212190,204846125,7410676,37056,107572674851,229535650138,169414005231,55017177704,8022471066,463514918,7255380,7040 %N A291844 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section. %C A291844 Row n>0 contains floor((2*n+2)/3) terms. %H A291844 Gheorghe Coserea, <a href="/A291844/b291844.txt">Rows n = 0..124, flattened</a> %H A291844 Luca G. Molinari, Nicola Manini, <a href="https://arxiv.org/abs/cond-mat/0512342">Enumeration of many-body skeleton diagrams</a>, arXiv:cond-mat/0512342 [cond-mat.str-el], 2006. %F A291844 y(x;t) = Sum_{n>=0} P_n(t)*x^n satisfies y = ((1+x)*z - 1) * (1 + t*x)/((1-t + t*(1+x)*z)*x*z^2), where z = A291843(x;t) and P_n(t) = Sum_{k=0..floor((2*n-1)/3)} T(n,k)*t^k for n > 0. %F A291844 A294158(n) = P_n(1), A294159(n)=P_n(-1), A294160(n)=P_n(0). %e A291844 A(x;t) = 1 + x + (4 + 2*t)*x^2 + (29 + 23*t)*x^3 + (274 + 292*t + 36*t^2)*x^4 + ... %e A291844 Triangle starts: %e A291844 n\k [0] [1] [2] [3] [4] [5] %e A291844 [0] 1; %e A291844 [1] 1; %e A291844 [2] 4, 2; %e A291844 [3] 29, 23; %e A291844 [4] 274, 292, 36; %e A291844 [5] 3145, 4068, 994, 16; %e A291844 [6] 42294, 62861, 22250, 1512; %e A291844 [7] 651227, 1075562, 484840, 61027, 1060; %e A291844 [8] 11295242, 20275944, 10867381, 1977879, 93188, 280; %e A291844 [9] 217954807, 418724047, 255929070, 59896915, 4823178, 80632; %e A291844 [10] ... %t A291844 m = maxExponent = 13; Z[_] = 0; %t A291844 Do[Z[t_] = -(((1 - l + l (1+t) Z[t]) (-((t Z[t])/(1 + l t)) - (1 - t - 2 l t^2)/(1 - l + l (1+t) Z[t]) - 2 t^2 Z'[t]))/((1+t) (1 - t - 2 l t^2))) + O[t]^m // Normal // Simplify, {m}]; %t A291844 gamma[t_] = ((1 + l t)(-1 + Z[t] + t Z[t]))/(Z[t]^2 (t + l t (-1 + Z[t] + t Z[t]))) + O[t]^m // Normal // Simplify; %t A291844 CoefficientList[# + O[l]^m, l]& /@ Most @ CoefficientList[gamma[t], t] // Flatten (* _Jean-François Alcover_, Nov 17 2018 *) %o A291844 (PARI) %o A291844 A291843_ser(N, t='t) = { %o A291844 my(x='x+O('x^N), y=1, y1=0, n=1, %o A291844 dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1)); %o A291844 while (n++, %o A291844 y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) + %o A291844 (t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn; %o A291844 if (y1 == y, break); y = y1;); y; %o A291844 }; %o A291844 A291844_ser(N, t='t) = { %o A291844 my(z = A291843_ser(N+1,t)); %o A291844 ((1+x)*z - 1)*(1 + t*x)/((1-t + t*(1+x)*z)*x*z^2); %o A291844 }; %o A291844 concat(apply(p->Vecrev(p), Vec(A291844_ser(12)))) %Y A291844 Cf. A286795, A286798, A286800, A291843. %Y A291844 Columns k=0..5 give A294160 (k=0), A294161 (k=1), A294162 (k=2), A294163 (k=3), A294164 (k=4), A294165 (k=5). %K A291844 nonn,tabf %O A291844 0,3 %A A291844 _Gheorghe Coserea_, Oct 24 2017