cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291876 Consider the graph with one central vertex connected to three outer vertices (a star graph). Then, a(n) is the minimum number of moves required to transfer a stack of n pegs from one outer vertex to another outer vertex, moving pegs to adjacent vertices, following the rules of the Towers of Hanoi.

This page as a plain text file.
%I A291876 #34 Feb 16 2025 08:33:51
%S A291876 2,6,12,20,32,48,66,90,122,158,206,260,324,396,492,600,728,872,1034,
%T A291876 1226,1442,1698,1986,2310,2694,3126,3612,4124,4700,5348,6116,6980,
%U A291876 7952,8976,10128,11424,12882,14418,16146,18090,20138,22442,25034,27950,31022,34478,38366
%N A291876 Consider the graph with one central vertex connected to three outer vertices (a star graph). Then, a(n) is the minimum number of moves required to transfer a stack of n pegs from one outer vertex to another outer vertex, moving pegs to adjacent vertices, following the rules of the Towers of Hanoi.
%H A291876 Robert Israel, <a href="/A291876/b291876.txt">Table of n, a(n) for n = 1..10000</a>
%H A291876 Thierry Bousch, <a href="https://www.emis.de/journals/SLC/wpapers/s77bousch.html">La Tour de Stockmeyer</a>, Séminaire Lotharingien de Combinatoire 77 (2017), Article B77d.
%H A291876 Caroline Holz auf der Heide, <a href="https://edoc.ub.uni-muenchen.de/20276/1/Holz_auf_der_Heide_Caroline.pdf">Distances and automatic sequences in distinguished variants of Hanoi graphs</a>, Dissertation. Fakultät für Mathematik, Informatik und Statistik. Ludwig-Maximilians-Universität München, 2016. [See Chapter 3.]
%H A291876 Paul K. Stockmeyer, <a href="http://www.cs.wm.edu/~pkstoc/boca.pdf"> Variations on the Four-Post Tower of Hanoi Puzzle</a>, Congr. Numer., 102 (1994), pp. 3-12.
%H A291876 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/StarGraph.html">Star Graph</a>
%H A291876 <a href="/index/To#Hanoi">Index entries for sequences related to Towers of Hanoi</a>
%F A291876 Conjecturally, a(n) = 2*A259823(n).
%F A291876 This conjecture was proved by Thierry Bousch, see link. - _Paul Zimmermann_, Oct 05 2015
%p A291876 A[0]:= 0:
%p A291876 A[1]:= 2:
%p A291876 for n from 2 to 100 do A[n]:= min(seq(3*A[k]+2^(n-k+1)-2, k=0..n-1)) od:
%p A291876 seq(A[i],i=1..100); # _Robert Israel_, Oct 27 2017
%Y A291876 Cf. A259823, A291877.
%K A291876 nonn
%O A291876 1,1
%A A291876 _Eric M. Schmidt_, Sep 04 2017
%E A291876 Terms a(17) and beyond from _Robert Israel_, Oct 27 2017