This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291905 #26 May 15 2021 06:17:55 %S A291905 1,1,0,1,1,0,2,1,1,3,2,3,4,4,6,8,8,11,14,16,21,26,32,39,49,60,75,93, %T A291905 114,142,176,217,268,334,411,510,632,779,967,1196,1477,1832,2266,2801, %U A291905 3470,4291,5310,6572,8129,10061,12449,15401,19058,23581,29178,36102,44668 %N A291905 Row sums of A291904. %C A291905 Number of compositions of n where the first part is 1 and the absolute difference between consecutive parts is 1. %H A291905 Seiichi Manyama, <a href="/A291905/b291905.txt">Table of n, a(n) for n = 0..10000</a> %e A291905 The a(6)=2 compositions of 6 are: %e A291905 : %e A291905 : o o| %e A291905 : oooo| %e A291905 : %e A291905 : o| %e A291905 : oo| %e A291905 : ooo| %e A291905 : %e A291905 The a(9)=3 compositions of 9 are: %e A291905 : %e A291905 : o | %e A291905 : ooo | %e A291905 : ooooo| %e A291905 : %e A291905 : o o o| %e A291905 : oooooo| %e A291905 : %e A291905 : o| %e A291905 : o oo| %e A291905 : ooooo| %p A291905 b:= proc(n, i) option remember; `if`(n=0, 1, add( %p A291905 `if`(j=i, 0, b(n-j, j)), j=max(1, i-1)..min(i+1, n))) %p A291905 end: %p A291905 a:= n-> b(n, 0): %p A291905 seq(a(n), n=0..60); # _Alois P. Heinz_, Sep 05 2017 %t A291905 T[0, 0] = 1; T[_, 0] = 0; T[n_?Positive, k_] /; 0 < k <= Floor[(Sqrt[8n+1] - 1)/2] := T[n, k] = T[n-k, k-1] + T[n-k, k+1]; T[_, _] = 0; %t A291905 a[n_] := Sum[T[n, k], {k, 0, Floor[(Sqrt[8n+1] - 1)/2]}]; %t A291905 Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, May 29 2019 *) %o A291905 (Python) %o A291905 from sympy.core.cache import cacheit %o A291905 @cacheit %o A291905 def b(n, i): return 1 if n==0 else sum(b(n - j, j) for j in range(max(1, i - 1), min(i + 1, n) + 1) if j != i) %o A291905 def a(n): return b(n, 0) %o A291905 print([a(n) for n in range(61)]) # _Indranil Ghosh_, Sep 06 2017, after Maple program %Y A291905 Cf. A291896, A291904. %K A291905 nonn %O A291905 0,7 %A A291905 _Seiichi Manyama_, Sep 05 2017