This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291909 #32 Feb 16 2025 08:33:51 %S A291909 0,0,1,0,9,6,0,36,96,72,0,100,600,1800,1440,0,225,2400,16200,51840, %T A291909 43200,0,441,7350,88200,635040,2116800,1814400,0,784,18816,352800, %U A291909 4515840,33868800,116121600,101606400,0,1296,42336,1143072,22861440,304819200,2351462400,8230118400,7315660800 %N A291909 Triangle read by rows: T(n,k) is the coefficient of x^(2*k) in the cycle polynomial of the complete bipartite graph K_{n,n}, 1 <= k <= n. %C A291909 Also the coefficients of x^(2*k) in the chordless cycle polynomial of the n X n rook graph. - _Eric W. Weisstein_, Feb 21 2018 %H A291909 Pontus von Brömssen, <a href="/A291909/b291909.txt">Rows n = 1..100, flattened</a> (rows n = 1..60 from Vincenzo Librandi). %H A291909 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ChordlessCycle.html">Chordless Cycle</a> %H A291909 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CompleteBipartiteGraph.html">Complete Bipartite Graph</a> %H A291909 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CyclePolynomial.html">Cycle Polynomial</a> %F A291909 T(n, k) = binomial(n, k)^2*k!*(k - 1)!/2 for k > 1. %e A291909 Cycle polynomials are %e A291909 0 %e A291909 x^4 %e A291909 9 x^4 + 6 x^6 %e A291909 36 x^4 + 96 x^6 + 72 x^8 %e A291909 100 x^4 + 600 x^6 + 1800 x^8 + 1440 x^10 %e A291909 ... %e A291909 so the first few rows are %e A291909 0; %e A291909 0, 1; %e A291909 0, 9, 6; %e A291909 0, 36, 96, 72; %e A291909 ... %t A291909 CoefficientList[Table[Sum[Binomial[n, k]^2 k! (k - 1)! x^k, {k, 2, n}]/2, {n, 10}], x] // Flatten %t A291909 Join[{0}, CoefficientList[Table[n^2 (HypergeometricPFQ[{1, 1, 1 - n, 1 - n}, {2}, x] - 1)/2, {n, 2, 10}], x]] // Flatten (* _Eric W. Weisstein_, Feb 21 2018 *) %o A291909 (PARI) T(n, k) = if(k>1, binomial(n, k)^2*k!*(k - 1)!/2, 0) \\ _Andrew Howroyd_, Apr 29 2018 %Y A291909 Cf. A070968 (row sums), A010796 (main diagonal). %K A291909 nonn,tabl %O A291909 1,5 %A A291909 _Eric W. Weisstein_, Sep 05 2017 %E A291909 Terms T(n,0) for n >= 3 deleted (in order to have a regular triangle) by _Pontus von Brömssen_, Sep 06 2022