cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291932 a(n) is the smallest k such that (n+1)*phi(k) = (n-1)*psi(k).

Original entry on oeis.org

2, 3, 95, 5, 143, 7, 319, 323, 559, 11, 117317, 13, 1007, 899, 1919, 17, 201983, 19, 441283, 1763, 394697, 23, 4031, 5249, 2911, 3239, 23519, 29, 3599, 31, 1796647, 979801, 8159, 5459, 5183, 37, 1550047, 10763, 8639, 41, 2709037, 43, 10207, 9179, 101567, 47, 12218993, 9701, 13199, 10403, 4018073, 53
Offset: 2

Views

Author

Altug Alkan, Sep 06 2017

Keywords

Comments

Least k such that Product_{p|k} (p+1)/(p-1) = (n+1)/(n-1). As a result, all terms are squarefree. - Charles R Greathouse IV, Sep 06 2017
a(102) > 100000000. - Robert G. Wilson v, Sep 08 2017
a(102) = 8759437837. - Giovanni Resta, Sep 11 2017
a(108) > 2550000000. - Robert G. Wilson v, Sep 20 2017

Examples

			a(4) = 95 = 5*19 because (psi(5*19) + phi(5*19)) / (psi(5*19) - phi(5*19)) = (6*20 + 4*18) / (6*20 - 4*18) = 4 and 95 is the least number with this property.
		

Crossrefs

Programs

  • Maple
    N:= 10^7: # to get all terms before the first with a(n) > N
    M:= nextprime(N):
    A:= Vector(M):
    R:= proc(n) mul((i[1]+1)/(i[1]-1),i=ifactors(n)[2]) end proc:
    for k from 2 to N do
    r:= R(k);
    n:= (r+1)/(r-1);
    if n::integer and n <= M and A[n] = 0 then
      A[n]:= k;
    fi
    od:
    m:=min(select(t -> A[t]=0, [$2..M]))-1:
    seq(A[i],i=2..m); # Robert Israel, Sep 06 2017
  • Mathematica
    psi[n_] := If[n < 1, 0, n Sum[ MoebiusMu[d]^2/d, {d, Divisors@ n}]]; f[n_] := Block[{k = 1}, While[(n + 1)*EulerPhi[k] != (n - 1)*psi[k], k++]; k]; Array[f, 52, 2] (* Robert G. Wilson v, Sep 06 2017 *)
  • PARI
    a(n)=my(target=2/(n-1)+1,start=n,end=10*n,f); while(1, forfactored(k=start,end, f=k[2][,1]; if(vecmax(k[2][,2])==1 && prod(i=1,#f, 2/(f[i]-1)+1)==target, return(k[1]))); start=end+1; end*=2) \\ Charles R Greathouse IV, Sep 06 2017

Formula

a(p) = p for all primes p.