A291965 Denominators of fractions with anomalous cancellation property, where more than one digit can be cancelled.
64, 65, 95, 98, 121, 132, 136, 143, 154, 160, 165, 176, 184, 185, 187, 190, 192, 194, 195, 196, 198, 202, 206, 208, 217, 220, 231, 238, 242, 253, 260, 264, 265, 268, 275, 286, 291, 294, 297, 298, 303, 306, 309, 325, 326, 330, 332, 335, 340, 341, 345, 352, 363, 365, 374, 385, 390, 392, 394, 395, 396, 398, 404, 406, 408, 427, 435
Offset: 1
Examples
The two-digit examples 16/64, 26/65, 19/95, 49/98 are well known. (The last one is particular in the sense that the (digit-wise) "simplified" fraction 4/8 is not in its lowest terms.) The earliest three-digit terms correspond to 22/121 = 2/11, 33/132 = 3/12, 34/136 = 4/16, 44/143 = 4/13, 64/160 = 4/10, 55/154, 138/184 = 3/4 (first example of a two-digit simplification), ... In constrast to A291093/A291094, the fraction 11/110 is not allowed here because we require that all pairs of common digits must be "cancelled", so the two 1's must be deleted, which leads to an invalid expression (with no digits left in the numerator).
Links
- M. F. Hasler, Table of n, N(n), a(n), for n = 1..146 (all terms a(n) < 1000), where N(n) = A291966(n) are the corresponding numerators.
- B. L. Schwartz, Proposal 434, Mathematics Magazine Vol. 34, No. 3 (1961), Problems and Questions, p. 173.
- Eric W. Weisstein, Anomalous Cancellation
Crossrefs
Programs
-
PARI
{is(n,dn=digits(n),Dn=Set(dn))=local(Cd,sc(x)=select(t->setsearch(Cd,t),x),rd(x)=local(S=0);fromdigits(select(d->!(setsearch(Cd,d)&&!bittest(S,d)&&S+=1<
1 && #(Cd=setintersect(Set(dd=digits(d)),Dn)) && gcd(n,d)%10 ||next; rd(dd) || next; my(n1=rd(dn),d1=rd(dd),nd=digits(n1)); Cd=setintersect(Set(dd=digits(d1)),Set(nd)); if(#Cd, d*rd(nd)==n*rd(dd) && rd(dd), d*n1 == n*d1) && return(d))}
Comments