A291966 Numerators of fractions with the anomalous cancellation property, corresponding to denominators listed in A291965.
16, 26, 19, 49, 22, 33, 34, 44, 55, 64, 66, 77, 138, 148, 88, 95, 96, 97, 39, 49, 99, 101, 103, 104, 124, 121, 33, 34, 44, 55, 65, 66, 106, 67, 77, 88, 97, 98, 99, 149, 101, 102, 206, 13, 163, 132, 83, 134, 136, 44, 138, 55, 66, 146, 77, 88, 195, 49, 197, 79, 99, 199, 101, 203, 102, 244, 145, 143, 55, 66, 116, 186, 67, 77, 88, 98, 99, 101
Offset: 1
Examples
The two-digit examples 16/64, 26/65, 19/95, 49/98 are well known. The earliest three-digit terms of A291965 correspond to 34/136 = 4/16, 64/160 = 4/10, 138/184 = 3/4, ...
Programs
-
PARI
/* Note: a(n) = A291966(A291965(n))! This function does not yield the n-th term, but the numerator corresponding to denominator N in A291965; if N is not in A291965, it yields zero. */ A291966(n, dn=digits(n), Dn=Set(dn))={local(Cd, sc(x)=select(t->setsearch(Cd, t), x), rd(x)=local(S=0); fromdigits(select(d->!(setsearch(Cd, d)&&!bittest(S, d)&&S+=1<
1 && #(Cd=setintersect(Set(dd=digits(d)), Dn)) && gcd(n, d)%10 ||next; rd(dd) || next; my(n1=rd(dn), d1=rd(dd), nd=digits(n1)); Cd=setintersect(Set(dd=digits(d1)), Set(nd)); if(#Cd, d*rd(nd)==n*rd(dd) && rd(dd), d*n1 == n*d1) && return(d))} /* To print this sequence: */ for(N=10,500,A291966(N)&&print1(A291966(N)","))
Comments