This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291976 #11 Jan 27 2023 09:04:30 %S A291976 1,-1,34,-5281,2185429,-1854147586,2755045819549,-6440372006517541, %T A291976 21861211462545555394,-100916681831006840635021, %U A291976 596756926975162013357972089,-4237398636260867429185819175026,32919774165127854788267224335178009 %N A291976 a(n) = (4*n)! * [z^(4*n)] exp(1 - (cos(z) + cosh(z))/2). %C A291976 Alternating row sums of A291452. %H A291976 Alois P. Heinz, <a href="/A291976/b291976.txt">Table of n, a(n) for n = 0..155</a> %p A291976 A291976 := proc(n) exp(1 - (cos(z) + cosh(z))/2): %p A291976 (4*n)!*coeff(series(%, z, 4*(n+1)), z, 4*n) end: %p A291976 seq(A291976(n), n=0..12); %p A291976 # second Maple program: %p A291976 b:= proc(n, t) option remember; `if`(n=0, 1-2*t, add( %p A291976 b(n-4*j, 1-t)*binomial(n-1, 4*j-1), j=1..n/4)) %p A291976 end: %p A291976 a:= n-> b(4*n, 0): %p A291976 seq(a(n), n=0..20); # _Alois P. Heinz_, Aug 14 2019 %t A291976 b[n_, t_] := b[n, t] = If[n == 0, 1-2t, Sum[b[n-4j, 1-t] * Binomial[n-1, 4j-1], {j, 1, n/4}]]; %t A291976 a[n_] := b[4n, 0]; %t A291976 Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Jan 27 2023, after _Alois P. Heinz_ *) %Y A291976 Cf. A291452. %K A291976 sign %O A291976 0,3 %A A291976 _Peter Luschny_, Sep 07 2017