A292033 Unitary phibonacci numbers: solutions k of the equation uphi(k) = uphi(k-1) + uphi(k-2), where uphi(k) is the unitary totient function (A047994).
3, 4, 7, 23, 9179, 244967, 14307856, 24571871, 128199059, 140830367, 401767631, 420567856, 468190439, 525970979, 780768167, 886434647, 1597167647, 4046753951, 4473784823, 5364666167, 5515718207, 11175736336, 14408460167, 18026319712, 20106993887, 20357733131
Offset: 1
Keywords
Examples
uphi(14307856) = uphi(14307855) + uphi(14307854) (3366080 = 7102080 + 6264000), so 14307856 is in the sequence.
Programs
-
Mathematica
uphi[n_]:=If[n == 1, 1, (Times@@(Table[#[[1]]^#[[2]]-1,{1}] & /@ FactorInteger[n]))[[1]]]; Select[ Range[3, 10^6], uphi[#] == uphi[#-1] + uphi[#-2] &]
-
PARI
uphi(n) = my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2]-1); isok(n) = uphi(n)==uphi(n-1)+uphi(n-2); \\ Altug Alkan, Sep 08 2017
Extensions
a(18)-a(26) from Amiram Eldar, Mar 01 2020
Comments