cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292037 Expansion of Product_{k>=1} ((1 + x^(2*k-1)) / (1 - x^(2*k-1)))^k.

This page as a plain text file.
%I A292037 #8 Sep 08 2017 06:48:31
%S A292037 1,2,2,6,10,16,30,46,78,124,196,306,470,724,1086,1644,2438,3608,5304,
%T A292037 7734,11232,16196,23270,33206,47250,66846,94232,132280,184966,257720,
%U A292037 357768,495090,682702,938760,1286668,1758708,2397012,3258340,4417570,5974204,8059824
%N A292037 Expansion of Product_{k>=1} ((1 + x^(2*k-1)) / (1 - x^(2*k-1)))^k.
%C A292037 Convolution of A263140 and A035528 (with a(0)=1).
%H A292037 Vaclav Kotesovec, <a href="/A292037/b292037.txt">Table of n, a(n) for n = 0..5000</a>
%F A292037 a(n) ~ exp(-1/24 - Pi^4/(1344*Zeta(3)) + Pi^2 * n^(1/3) / (8*(7*Zeta(3))^(1/3)) + 3*(7*Zeta(3))^(1/3) * n^(2/3)/4) * A^(1/2) * (7*Zeta(3))^(11/72) / (2^(5/4) * sqrt(3*Pi) * n^(47/72)), where A is the Glaisher-Kinkelin constant A074962.
%t A292037 nmax = 50; CoefficientList[Series[Product[((1+x^(2*k-1))/(1-x^(2*k-1)))^k, {k, 1, nmax}], {x, 0, nmax}], x]
%Y A292037 Cf. A035528, A080054, A263140, A292038.
%K A292037 nonn
%O A292037 0,2
%A A292037 _Vaclav Kotesovec_, Sep 08 2017