This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292044 #42 Feb 25 2025 22:55:24 %S A292044 0,1,6,32,160,768,3584,16384,73728,327680,1441792,6291456,27262976, %T A292044 117440512,503316480,2147483648,9126805504,38654705664,163208757248, %U A292044 687194767360,2886218022912,12094627905536,50577534877696,211106232532992,879609302220800,3659174697238528 %N A292044 Wiener index of the n-halved cube graph. %C A292044 a(n) is the sum of the first 2^(n-1) entries of A116640. - _Joe Slater_, Apr 11 2018 %H A292044 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HalvedCubeGraph.html">Halved Cube Graph</a>. %H A292044 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WienerIndex.html">Wiener Index</a>. %H A292044 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-16). %F A292044 a(n) = 2^(2*n-5)*n for n > 1. %F A292044 a(n) = 8*a(n-1) - 16*a(n-2) for n > 3. %F A292044 G.f.: ((1 - 2 x) x^2)/(1 - 4 x)^2. %F A292044 a(n) = 4*a(n-1) + 2^(2*n-5) for n > 2. - _Joe Slater_, Apr 11 2018 %F A292044 From _Amiram Eldar_, Apr 16 2022: (Start) %F A292044 Sum_{n>=2} 1/a(n) = 32*log(4/3) - 8. %F A292044 Sum_{n>=2} (-1)^n/a(n) = 8 - 32*log(5/4). (End) %F A292044 From _Stefano Spezia_, Aug 04 2022: (Start) %F A292044 E.g.f.: (exp(4*x) - 1)*x/8. %F A292044 a(n) = (-1)^n*det(M(n-1))/2 for n > 1, where M(n) is the n X n symmetric Toeplitz matrix whose first row consists of 2, 4, ..., 2*n. (End) %t A292044 Table[If[n == 1, 0, 2^(2 n - 5) n], {n, 40}] %t A292044 Join[{0}, LinearRecurrence[{8, -16}, {1, 6}, 20]] %t A292044 CoefficientList[Series[((1 - 2 x) x)/(1 - 4 x)^2, {x, 0, 20}], x] %o A292044 (PARI) a(n) = if(n<2, n-1, 2^(2*n-5)*n); \\ _Altug Alkan_, Apr 12 2018 %Y A292044 Cf. A116640. %K A292044 nonn,easy %O A292044 1,3 %A A292044 _Eric W. Weisstein_, Sep 08 2017