A292050 Matula-Goebel numbers of semi-binary rooted trees.
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 39, 41, 43, 46, 47, 49, 51, 55, 58, 59, 62, 65, 69, 73, 77, 79, 82, 83, 85, 86, 87, 91, 93, 94, 97, 101, 109, 115, 118, 119, 121, 123, 127, 129, 137, 139, 141, 143, 145
Offset: 1
Keywords
Programs
-
Mathematica
nn=200; primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; semibinQ[n_]:=Or[n===1,With[{m=primeMS[n]},And[Length[m]<=2,And@@semibinQ/@m]]]; Select[Range[nn],semibinQ]
Comments