This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292053 #10 Feb 16 2025 08:33:51 %S A292053 0,6,52,228,708,1778,3864,7560,13656,23166,37356,57772,86268,125034, %T A292053 176624,243984,330480,439926,576612,745332,951412,1200738,1499784, %U A292053 1855640,2276040,2769390,3344796,4012092,4781868,5665498,6675168,7823904,9125600,10595046 %N A292053 Wiener index of the n X n king graph. %H A292053 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KingGraph.html">King Graph</a> %H A292053 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WienerIndex.html">Wiener Index</a> %H A292053 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %F A292053 a(n) = (n - 1)*n*(n + 1)*(7*n^2 + 2)/30. %F A292053 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). %F A292053 G.f.: 2*x^2*(3 + 8*x + 3*x^2)/(1 - x)^6. %t A292053 Table[(n - 1) n (n + 1) (7 n^2 + 2)/30, {n, 40}] %t A292053 LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 6, 52, 228, 708, 1778}, 20] %t A292053 CoefficientList[Series[2 x (3 + 8 x + 3 x^2)/(1 - x)^6, {x, 0, 20}], x] %K A292053 nonn,easy %O A292053 1,2 %A A292053 _Eric W. Weisstein_, Sep 08 2017