This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292073 #32 Feb 16 2025 08:33:51 %S A292073 1,9,421,64727,33548731,68719441881,562949953225997, %T A292073 18446744073708516927,2417851639229258344138819, %U A292073 1267650600228229401496677076985,2658455991569831745807614120434020301,22300745198530623141535718272648360902500919 %N A292073 Number of dominating sets in the n X n rook complement graph. %C A292073 Non-dominating sets are just those that are contained in the union of a single row and column minus the intersecting vertex. - _Andrew Howroyd_, Sep 13 2017 %H A292073 Vincenzo Librandi, <a href="/A292073/b292073.txt">Table of n, a(n) for n = 1..50</a> %H A292073 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DominatingSet.html">Dominating Set</a> %H A292073 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RookComplementGraph.html">Rook Complement Graph</a> %F A292073 a(n) = 2^(n^2) - 2*n*(2^n - 2) + n^2 - n^2*(2^(n-1)-1)^2 + n^2*(n-1)^2 - 2*binomial(n,2)^2 - 1 for n > 1. - _Andrew Howroyd_, Sep 13 2017 %t A292073 Table[If[n == 1, 1, 2^n^2 + (2^n (n - 2) - 4^(n - 1) n + (n - 1)^2 n/2 + 4) n - 1], {n, 20}] %o A292073 (PARI) a(n) = if(n == 1, 1, 2^(n^2) - 2*n*(2^n - 2) + n^2 - n^2*(2^(n-1)-1)^2 + n^2*(n-1)^2 - 2*binomial(n,2)^2 - 1); \\ _Andrew Howroyd_, Sep 13 2017 %o A292073 (Magma) [1] cat [2^(n^2)-2*n*(2^n-2)+n^2-n^2*(2^(n-1)-1)^2+ n^2*(n-1)^2-2*Binomial(n,2)^2-1: n in [2..15]]; // _Vincenzo Librandi_, Mar 17 2018 %Y A292073 Cf. A291623, A292074. %K A292073 nonn %O A292073 1,2 %A A292073 _Eric W. Weisstein_, Sep 12 2017 %E A292073 a(6)-a(12) from _Andrew Howroyd_, Sep 13 2017