This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292080 #28 Jan 14 2018 03:23:26 %S A292080 1,0,0,0,2,2,14,84,630,6096,55336,672160,7409300,104999520,1366363752, %T A292080 22068387264,331233939624,6005919062528,102144359744192, %U A292080 2054811316442112,39053339674065360,863259240785840640,18132529836143846560,436899062862222484480 %N A292080 Number of nonequivalent ways to place n non-attacking rooks on an n X n board with no rook on 2 main diagonals up to rotations and reflections of the board. %C A292080 For odd n, there are no symmetrical configurations of non-attacking rooks without a rook in the main diagonal, so a(2n+1) = A003471(2n+1) / 8. For even n, configurations with rotational and diagonal symmetry are possible. %H A292080 Andrew Howroyd, <a href="/A292080/b292080.txt">Table of n, a(n) for n = 0..100</a> %H A292080 Andrew Howroyd, <a href="/A292080/a292080.txt">Nonequivalent and Symmetric Solutions</a> %F A292080 a(2n+1) = A003471(2n+1) / 8, a(2n) = (A003471(2n) + 2^n * A000166(n) + 2*A037224(2*n) + 2*A053871(n)) / 8. %e A292080 Case n=4: The 2 nonequivalent solutions are: %e A292080 _ x _ _ _ x _ _ %e A292080 x _ _ _ _ _ _ x %e A292080 _ _ _ x x _ _ _ %e A292080 _ _ x _ _ _ x _ %e A292080 Case n=5: The 2 nonequivalent solutions are: %e A292080 _ x _ _ _ _ x _ _ _ %e A292080 x _ _ _ _ _ _ _ _ x %e A292080 _ _ _ x _ x _ _ _ _ %e A292080 _ _ _ _ x _ _ x _ _ %e A292080 _ _ x _ _ _ _ _ x _ %t A292080 sf[n_] := n! * SeriesCoefficient[Exp[-x ] / (1 - x), {x, 0, n}]; %t A292080 F[n_] := (Clear[v]; v[_] = 0; For[m = 4, m <= n, m++, v[m] = (m - 1)*v[m - 1] + 2*If[OddQ[m], (m - 1)*v[m - 2], (m - 2)*If[m == 4, 1, v[m - 4]]]]; v[n]); %t A292080 d[n_] := Sum[(-1)^(n-k)*Binomial[n, k]*(2k)!/(2^k*k!), {k, 0, n}]; %t A292080 R[n_] := If[OddQ[n], 0, (n - 1)!*2/(n/2 - 1)!]; %t A292080 a[0] = 1; a[n_] := (F[n] + If[OddQ[n], 0, m = n/2; 2^m * sf[m] + 2*R[m] + 2*d[m]])/8; %t A292080 Table[a[n], {n, 0, 23}] (* _Jean-François Alcover_, Dec 28 2017, after _Andrew Howroyd_ *) %o A292080 (PARI) \\ here sf is A000166, F is A003471, D is A053871, R(n) is A037224(2n). %o A292080 sf(n) = {n! * polcoeff( exp(-x + x * O(x^n)) / (1 - x), n)} %o A292080 F(n) = {my(v = vector(n)); for(n=4,length(v),v[n]=(n-1)*v[n-1]+2*if(n%2==1,(n-1)*v[n-2],(n-2)*if(n==4,1,v[n-4]))); v[n]} %o A292080 D(n) = {sum(k=0, n, (-1)^(n-k) * binomial(n,k) * (2*k)!/(2^k*k!))} %o A292080 R(n) = {if(n%2==1, 0, (n-1)!*2/(n/2-1)!)} %o A292080 a(n) = {(F(n) + if(n%2==1, 0, my(m=n/2); 2^m * sf(m) + 2*R(m) + 2*D(m)))/8} %Y A292080 Cf. A000166, A000903, A003471, A037224, A053871, A064280. %K A292080 nonn %O A292080 0,5 %A A292080 _Andrew Howroyd_, Sep 12 2017