This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292085 #18 Sep 07 2018 17:01:46 %S A292085 1,1,0,1,1,0,1,1,1,0,1,1,2,2,0,1,1,2,4,3,0,1,1,2,5,9,6,0,1,1,2,5,11, %T A292085 23,11,0,1,1,2,5,12,30,58,23,0,1,1,2,5,12,32,80,156,46,0,1,1,2,5,12, %U A292085 33,87,228,426,98,0,1,1,2,5,12,33,89,251,656,1194,207,0 %N A292085 Number A(n,k) of (unlabeled) rooted trees with n leaf nodes and without unary nodes or outdegrees larger than k; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A292085 Alois P. Heinz, <a href="/A292085/b292085.txt">Antidiagonals n = 1..141, flattened</a> %H A292085 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %F A292085 A(n,k) = Sum_{j=1..k} A292086(n,j). %e A292085 : T(4,3) = 4 : %e A292085 : : %e A292085 : o o o o : %e A292085 : / \ / \ / \ /|\ : %e A292085 : o N o o o N o N N : %e A292085 : / \ ( ) ( ) /|\ ( ) : %e A292085 : o N N N N N N N N N N : %e A292085 : ( ) : %e A292085 : N N : %e A292085 : : %e A292085 Square array A(n,k) begins: %e A292085 1, 1, 1, 1, 1, 1, 1, 1, ... %e A292085 0, 1, 1, 1, 1, 1, 1, 1, ... %e A292085 0, 1, 2, 2, 2, 2, 2, 2, ... %e A292085 0, 2, 4, 5, 5, 5, 5, 5, ... %e A292085 0, 3, 9, 11, 12, 12, 12, 12, ... %e A292085 0, 6, 23, 30, 32, 33, 33, 33, ... %e A292085 0, 11, 58, 80, 87, 89, 90, 90, ... %e A292085 0, 23, 156, 228, 251, 258, 260, 261, ... %p A292085 b:= proc(n, i, v, k) option remember; `if`(n=0, %p A292085 `if`(v=0, 1, 0), `if`(i<1 or v<1 or n<v, 0, %p A292085 `if`(v=n, 1, add(binomial(A(i,k)+j-1, j)* %p A292085 b(n-i*j, i-1, v-j, k), j=0..min(n/i, v))))) %p A292085 end: %p A292085 A:= proc(n, k) option remember; `if`(n<2, n, %p A292085 add(b(n, n+1-j, j, k), j=2..min(n, k))) %p A292085 end: %p A292085 seq(seq(A(n, 1+d-n), n=1..d), d=1..14); %t A292085 b[n_, i_, v_, k_] := b[n, i, v, k] = If[n == 0, If[v == 0, 1, 0], If[i < 1 || v < 1 || n < v, 0, If[v == n, 1, Sum[Binomial[A[i, k] + j - 1, j]*b[n - i*j, i - 1, v - j, k], {j, 0, Min[n/i, v]}]]]]; %t A292085 A[n_, k_] := A[n, k] = If[n < 2, n, Sum[b[n, n + 1 - j, j, k], {j, 2, Min[n, k]}]]; %t A292085 Table[Table[A[n, 1 + d - n], {n, 1, d}], {d, 1, 14}] // Flatten (* _Jean-François Alcover_, Nov 07 2017, after _Alois P. Heinz_ *) %Y A292085 Columns k=1-10 give: A063524, A001190, A268172, A292210, A292211, A292212, A292213, A292214, A292215, A292216. %Y A292085 Main diagonal gives A000669. %Y A292085 Cf. A244372, A288942, A292086. %K A292085 nonn,tabl %O A292085 1,13 %A A292085 _Alois P. Heinz_, Sep 08 2017