This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292087 #15 Feb 28 2024 08:45:46 %S A292087 1,2,7,23,78,262,893,3040,10411,35724,122950,424004,1465254,5071981, %T A292087 17584226,61046464,212197118,738422362,2572261241,8968726829, %U A292087 31298189180,109307655964,382031357974,1336107044159,4675807680776,16372936282017,57363325974309 %N A292087 Limit of the number of (unlabeled) rooted trees without unary nodes where n is the difference between the number of leafs and the maximal outdegree as the tree size increases. %H A292087 Alois P. Heinz, <a href="/A292087/b292087.txt">Table of n, a(n) for n = 0..100</a> %H A292087 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %e A292087 : a(0) = 1: %e A292087 : o %e A292087 : //( )\\ %e A292087 : N N N N N N %e A292087 : %e A292087 : a(1) = 2: %e A292087 : o o %e A292087 : / \ / /|\ \ %e A292087 : o N o N N N N %e A292087 : / /|\ \ ( ) %e A292087 : N N N N N N N %e A292087 : %e A292087 : a(2) = 7: %e A292087 : o o o o %e A292087 : / \ / \ /( )\ / | \ %e A292087 : o N o N o N N N o N N %e A292087 : / \ /( )\ / \ /( )\ %e A292087 : o N o N N N o N N N N N %e A292087 : /( )\ ( ) ( ) %e A292087 : N N N N N N N N %e A292087 : %e A292087 : o o o %e A292087 : / \ /( )\ / ( \ \ %e A292087 : o o o N N N o o N N %e A292087 : /( )\ ( ) /|\ ( ) ( ) %e A292087 : N N N N N N N N N N N N N %e A292087 : %p A292087 b:= proc(n, i, v, k) option remember; `if`(n=0, %p A292087 `if`(v=0, 1, 0), `if`(i<1 or v<1 or n<v, 0, %p A292087 `if`(v=n, 1, add(binomial(A(i,k)+j-1, j)* %p A292087 b(n-i*j, i-1, v-j, k), j=0..min(n/i, v))))) %p A292087 end: %p A292087 A:= proc(n, k) option remember; `if`(n<2, n, %p A292087 add(b(n, n+1-j, j, k), j=2..min(n, k))) %p A292087 end: %p A292087 a:= n-> A(2*n+3, n+3)-A(2*n+3, n+2): %p A292087 seq(a(n), n=0..23); %t A292087 b[n_, i_, v_, k_] := b[n, i, v, k] = If[n == 0, %t A292087 If[v == 0, 1, 0], If[i < 1 || v < 1 || n < v, 0, %t A292087 If[v == n, 1, Sum[Binomial[A[i, k] + j - 1, j]* %t A292087 b[n - i*j, i - 1, v - j, k], {j, 0, Min[n/i, v]}]]]]; %t A292087 A[n_, k_] := A[n, k] = If[n < 2, n, %t A292087 Sum[b[n, n + 1 - j, j, k], {j, 2, Min[n, k]}]]; %t A292087 a[n_] := A[2*n + 3, n + 3] - A[2*n + 3, n + 2]; %t A292087 Table[a[n], {n, 0, 23}] (* _Jean-François Alcover_, Feb 28 2024, after _Alois P. Heinz_ *) %Y A292087 Limit of reversed rows of A292086. %K A292087 nonn %O A292087 0,2 %A A292087 _Alois P. Heinz_, Sep 08 2017