This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292092 #20 Aug 11 2018 11:32:08 %S A292092 56,56,16,56,0,28,38,42,0,34,0,34,34,82,20,0,70,100,20,0,20,0,0,56,0, %T A292092 46,64,64,64,92,74,34,118,66,88,52,0,0,34,268,42,34,0,46,30,92,0,16, %U A292092 34,76,76,34,34,38,110,20,64,92,46,56,0,46,76,0,74,0,88,0 %N A292092 Consider Watanabe's 3-shift tag system {00/1011} applied to the word (100)^n; a(n) = length of first word we see that is in the cycle, if the orbit cycles, or 0 if the orbit reaches the empty string, or -1 if the orbit is unbounded. %C A292092 Watanabe's tag system {00/1011} maps a word w over {0,1} to w', where if w begins with 0, w' is obtained by appending 00 to w and deleting the first three letters, or if w begins with 1, w' is obtained by appending 1011 to w and deleting the first three letters. %C A292092 The empty word is included in the count. %C A292092 Following Asveld we set a(n)=0 if the orbit ends at the empty word. %H A292092 Lars Blomberg, <a href="/A292092/b292092.txt">Table of n, a(n) for n = 1..6080</a> %H A292092 Peter R. J. Asveld, <a href="http://doc.utwente.nl/66184/1/1988m20.pdf">On a Post's System of Tag</a>. Bulletin of the EATCS 36 (1988), 96-102. %H A292092 Shigeru Watanabe, <a href="/A284116/a284116.pdf">Periodicity of Post's normal process of tag</a>, in Jerome Fox, ed., Proceedings of Symposium on Mathematical Theory of Automata, New York, April 1962, Polytechnic Press, Polytechnic Institute of Brooklyn, 1963, pp. 83-99. [Annotated scanned copy] %e A292092 The following is the analog of columns 3 through 7 of Asveld's Table 1. %e A292092 1 [171, 6, 56, 59, 138] %e A292092 2 [166, 6, 56, 59, 133] %e A292092 3 [11, 6, 16, 17, 10] %e A292092 4 [154, 6, 56, 59, 121] %e A292092 5 [105, 0, 0, 31, 24] %e A292092 6 [14, 518, 28, 85, 215] %e A292092 7 [57, 6, 38, 41, 36] %e A292092 8 [68, 518, 42, 85, 333] %e A292092 9 [173, 0, 0, 49, 38] %e A292092 10 [1098, 6, 34, 159, 407] %e A292092 11 [8265, 0, 0, 328, 4429] %e A292092 12 [720, 6, 34, 93, 343] %e A292092 13 [1715, 6, 34, 93, 1338] %e A292092 14 [130, 28, 82, 83, 85] %e A292092 15 [1979, 6, 20, 215, 720] %e A292092 16 [2024, 0, 0, 193, 1023] %e A292092 17 [833, 6, 70, 121, 420] %e A292092 18 [162, 34, 100, 101, 105] %e A292092 19 [591, 6, 20, 109, 118] %e A292092 20 [6124, 0, 0, 357, 2259] %e A292092 21 [59673, 6, 20, 781, 33530] %e A292092 22 [748, 0, 0, 150, 328] %e A292092 23 [11631, 0, 0, 273, 6250] %e A292092 24 [3200, 6, 56, 261, 1515] %e A292092 ... %Y A292092 Cf. A284116, A291067, A291780, A291781. %Y A292092 Asveld's Table 1 gives data about the behavior of Post's 3-shift tag system {00/1101} applied to the word (100)^n. The first column gives n, the nonzero values in column 2 give A291792, and columns 3 through 7 give A284119, 291793 (or A284121), A291794, A291795, A291796. For the corresponding data for Watanabe's 3-shift tag system {00/1011} applied to (100)^n see A292089, A292090, A292091, A292092, A292093, A292094. %K A292092 nonn %O A292092 1,1 %A A292092 _N. J. A. Sloane_, Sep 10 2017 %E A292092 a(25)-(68) from _Lars Blomberg_, Sep 14 2017