cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292127 a(1) = 1, a(r(n)^k) = 1 + k * a(n) where r(n) is the n-th number that is not a perfect power A007916(n).

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 7, 7, 8, 6, 7, 8, 8, 7, 9, 7, 7, 8, 9, 9, 6, 8, 10, 8, 7, 8, 9, 10, 10, 7, 9, 11, 9, 8, 9, 10, 11, 9, 11, 8, 10, 12, 10, 9, 10, 11, 12, 10, 12, 9, 11, 13, 7, 11, 10, 11, 12, 13, 11, 13, 10, 12, 14, 8, 12, 11
Offset: 1

Views

Author

Gus Wiseman, Sep 09 2017

Keywords

Comments

Any positive integer greater than 1 can be written uniquely as a perfect power r(n)^k. We define a planted achiral (or generalized Bethe) tree b(n) for any positive integer greater than 1 by writing n as a perfect power r(d)^k and forming a tree with k branches all equal to b(d). Then a(n) is the number of nodes in b(n).

Examples

			The first nineteen planted achiral trees are:
o,
(o),
((o)), (oo),
(((o))), ((oo)),
((((o)))), (ooo), ((o)(o)), (((oo))),
(((((o))))), ((ooo)), (((o)(o))), ((((oo)))),
((((((o)))))), (oooo), (((ooo))), ((((o)(o)))), (((((oo))))).
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    rads=Select[Range[2,nn],GCD@@FactorInteger[#][[All,2]]===1&];
    a[1]:=1;a[n_]:=With[{k=GCD@@FactorInteger[n][[All,2]]},1+k*a[Position[rads,n^(1/k)][[1,1]]]];
    Array[a,nn]