This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292166 #30 Sep 04 2022 17:10:23 %S A292166 1,1,-1,1,-1,-1,1,-1,-2,0,1,-1,-4,-1,0,1,-1,-8,-5,-1,1,1,-1,-16,-19, %T A292166 -7,5,0,1,-1,-32,-65,-37,27,1,1,1,-1,-64,-211,-175,155,17,13,0,1,-1, %U A292166 -128,-665,-781,927,205,167,4,0,1,-1,-256,-2059,-3367,5675,2129,2089,110,0,0 %N A292166 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - j^k*x^j). %H A292166 Seiichi Manyama, <a href="/A292166/b292166.txt">Antidiagonals n = 0..139, flattened</a> %F A292166 A(0,k) = 1 and A(n,k) = -(1/n) * Sum_{j=1..n} (Sum_{d|j} d^(1+k*j/d)) * A(n-j,k) for n > 0. - _Seiichi Manyama_, Nov 02 2017 %e A292166 Square array begins: %e A292166 1, 1, 1, 1, 1, ... %e A292166 -1, -1, -1, -1, -1, ... %e A292166 -1, -2, -4, -8, -16, ... %e A292166 0, -1, -5, -19, -65, ... %e A292166 0, -1, -7, -37, -175, ... %t A292166 A[n_, k_] := A[n, k] = If[n == 0, 1, -(1/n)*Sum[Sum[d^(1+k*j/d), {d, Divisors[j]}]*A[n-j, k], {j, 1, n}]]; %t A292166 Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Sep 04 2022 *) %Y A292166 Columns k=0..2 give A010815, A022661, A292164. %Y A292166 Rows n=0..2 give A000012, (-1)*A000012, (-1)*A000079. %Y A292166 Main diagonal gives A292167. %K A292166 sign,look,tabl %O A292166 0,9 %A A292166 _Seiichi Manyama_, Sep 10 2017