This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292189 #25 Sep 07 2023 15:50:28 %S A292189 1,1,1,1,1,1,1,1,2,2,1,1,4,5,2,1,1,8,13,7,3,1,1,16,35,25,15,4,1,1,32, %T A292189 97,91,77,25,5,1,1,64,275,337,405,161,43,6,1,1,128,793,1267,2177,1069, %U A292189 393,64,8,1,1,256,2315,4825,11925,7313,3799,726,120,10 %N A292189 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + j^k*x^j). %H A292189 Alois P. Heinz, <a href="/A292189/b292189.txt">Rows n = 0..150, flattened</a> %e A292189 Square array begins: %e A292189 1, 1, 1, 1, 1, ... %e A292189 1, 1, 1, 1, 1, ... %e A292189 1, 2, 4, 8, 16, ... %e A292189 2, 5, 13, 35, 97, ... %e A292189 2, 7, 25, 91, 337, ... %p A292189 b:= proc(n, i, k) option remember; (m-> %p A292189 `if`(m<n, 0, `if`(n=m, i!^k, b(n, i-1, k)+ %p A292189 `if`(i>n, 0, i^k*b(n-i, i-1, k)))))(i*(i+1)/2) %p A292189 end: %p A292189 A:= (n, k)-> b(n$2, k): %p A292189 seq(seq(A(n, d-n), n=0..d), d=0..14); # _Alois P. Heinz_, Sep 11 2017 %t A292189 m = 14; %t A292189 col[k_] := col[k] = Product[1 + j^k*x^j, {j, 1, m}] + O[x]^(m+1) // CoefficientList[#, x]&; %t A292189 A[n_, k_] := col[k][[n+1]]; %t A292189 Table[A[n, d-n], {d, 0, m}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, Feb 11 2021 *) %Y A292189 Columns k=0..5 give A000009, A022629, A092484, A265840, A265841, A265842. %Y A292189 Rows 0+1, 2, 3 give A000012, A000079, A007689. %Y A292189 Main diagonal gives A292190. %Y A292189 Cf. A292166. %K A292189 nonn,tabl %O A292189 0,9 %A A292189 _Seiichi Manyama_, Sep 11 2017