This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292190 #22 Sep 14 2017 08:17:10 %S A292190 1,1,4,35,337,11925,371081,49032439,3545396034,3416952655320, %T A292190 749189363202730,598250899004413536,2383502427069445040595, %U A292190 1729793152213690218766715,131751643363739706679145099315,271212858254426215135033141804302 %N A292190 Sum of n-th powers of products of terms in all partitions of n into distinct parts. %H A292190 Alois P. Heinz, <a href="/A292190/b292190.txt">Table of n, a(n) for n = 0..98</a> %F A292190 a(n) = [x^n] Product_{k=1..n} (1 + k^n*x^k). %e A292190 5 = 4 + 1 = 3 + 2. So a(5) = 5^5 + (4*1)^5 + (3*2)^5 = 11925. %p A292190 b:= proc(n, i, k) option remember; (m-> %p A292190 `if`(m<n, 0, `if`(n=m, i!^k, b(n, i-1, k)+ %p A292190 `if`(i>n, 0, i^k*b(n-i, i-1, k)))))(i*(i+1)/2) %p A292190 end: %p A292190 a:= n-> b(n$3): %p A292190 seq(a(n), n=0..20); # _Alois P. Heinz_, Sep 11 2017 %t A292190 nmax = 15; Table[SeriesCoefficient[Product[(1 + k^n*x^k), {k, 1, nmax}], {x, 0, n}], {n, 0, nmax}] (* _Vaclav Kotesovec_, Sep 12 2017 *) %o A292190 (PARI) {a(n) = polcoeff(prod(k=1, n, 1+k^n*x^k+x*O(x^n)), n)} %Y A292190 Main diagonal of A292189. %Y A292190 Cf. A265949, A292167, A292194, A292305, A292306. %K A292190 nonn %O A292190 0,3 %A A292190 _Seiichi Manyama_, Sep 11 2017