cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292208 Composite numbers k such that sigma(cototient(k)) = cototient(sigma(k) - k) + cototient(k); that is, f(g(k)) = g(f(k)) where f = A001065 and g = A051953.

Original entry on oeis.org

4, 16, 35, 65, 77, 78, 114, 146, 161, 185, 209, 221, 256, 335, 341, 371, 377, 437, 485, 515, 595, 611, 626, 644, 654, 671, 707, 731, 767, 779, 805, 851, 899, 917, 965, 1007, 1067, 1115, 1157, 1211, 1247, 1271, 1309, 1337, 1385, 1397, 1463, 1495, 1529, 1535, 1577, 1631, 1645, 1691, 1771
Offset: 1

Views

Author

Altug Alkan, Sep 11 2017

Keywords

Comments

Luca and Pomerance proved that arithmetic functions f(g(n)) and g(f(n)) are independent where f = A001065 and g = A051953. For related details and theorems see Luca & Pomerance link.

Examples

			35 = 5*7 is a term because A001065(A051953(35)) = A051953(A001065(35)).
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 1800, Function[n, And[CompositeQ@ n, DivisorSigma[1, n - EulerPhi@ n] == (n - EulerPhi@ n) + # - EulerPhi@ # &[DivisorSigma[1, n] - n]]]] (* Michael De Vlieger, Sep 12 2017 *)
  • PARI
    a001065(n) = sigma(n)-n;
    a051953(n) = n-eulerphi(n);
    lista(nn) = forcomposite(n=4, nn, if(a051953(a001065(n))==a001065(a051953(n)), print1(n, ", ")));