cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292217 Conjectured list of numbers in increasing order that belong to sociable cycles of length greater than 2 in which the sum of the cycle is divisible by 10.

Original entry on oeis.org

1264460, 1305184, 1547860, 1727636, 4938136, 5423384, 5504056, 5753864, 18656380, 20522060, 24289964, 28158165, 28630036, 29902635, 29971755, 30853845, 81128632, 91314968, 91401368, 96389032, 209524210, 230143790, 231439570, 246667790, 498215416, 506040584, 510137384, 583014136
Offset: 1

Views

Author

Zoltan Galantai, Sep 11 2017

Keywords

Comments

This list is not known to be complete (564 might be a member). See A122726. - N. J. A. Sloane, Sep 17 2021
Up to the known 1593 sociable number cycles, 96.1% of the sociable number cycles satisfy this condition (up to the first 10 sociable number cycles: 40%; up to the first 100 sociable number cycles: 77%; up to the first 500 sociable number cycles: 92%, and up to the first 1000 sociable number cycles: 94.9%). So the conjecture here is that as the number of sociable number cycles increases, the percentage of the sums of the sociable number cycles divisible by 10 approaches 100%. Notice that the sums of amicable pairs are similarly often divisible by 10, but are not included here (see A291422).

Examples

			The sum of 1264460, 1547860, 1727636 and 1305184 is divisible by ten, thus this sociable number cycle belongs to the sequence. On the other hand, the 12496, 14288, 15472, 14536, 14264 sociable number cycle does not qualify since its sum is 71506.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, 1994, pp. 62 - 63.
  • Eric W. Weisstein, CRC Concise Encyclopedia of Mathematics, Chappman and HALL/CRC, 2003, pp. 2747 - 2748.
  • Song Y. Yan, Perfect, Amicable and Sociable Numbers. A Computation Approach, World Scientific 1996, pp. 34 - 38.

Crossrefs

Extensions

Changed definition and added comment to point out that this sequence is only conjectural. - N. J. A. Sloane, Sep 17 2021