This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292222 #19 Dec 07 2018 19:01:47 %S A292222 1,1,2,1,3,6,1,10,12,24,1,15,50,60,120,1,41,180,300,360,720,1,63,497, %T A292222 1260,2100,2520,5040,1,162,1484,6496,10080,16800,20160,40320,1,255, %U A292222 5154,20916,58464,90720,151200,181440,362880,1,637,13680,95640,322560,584640,907200,1512000,1814400,3628800 %N A292222 Triangle corresponding to the partition array of the M_1 multinomials (A036038). %C A292222 Abramowitz-Stegun (A-St) M_1 multinomials as partition array (partitions in A-St order) are given in A036038. See this for details. %C A292222 This is the sub-triangle of A226874(n,k) for n >= k >= 1 (here k=m). %C A292222 The M_1 multinomials for a partition written in exponent form P = [1^e[1], 2^e[2], ... n^e[n]] with nonnegative e[j], for j =1, ..., n, is M_1(P) = n!/Product_{j=1..n} j!^e[j]. See the A-St link. %H A292222 Milton Abramowitz and Irene A. Stegun, editors, <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP?Res=150&Page=831&Submit=Go">Multinomials: M_1, M_2 and M_3</a>, Handbook of Mathematical Functions, December 1972, pp. 831-2. %F A292222 T(n, m) = sum over the A036038 entries in row n with parts number m, for m >= n >= 1. %e A292222 The triangle T(n, m) begins: %e A292222 n\m 1 2 3 4 5 6 7 8 9 10 ... %e A292222 1: 1 %e A292222 2: 1 2 %e A292222 3: 1 3 6 %e A292222 4: 1 10 12 24 %e A292222 5: 1 15 50 60 120 %e A292222 6: 1 41 180 300 360 720 %e A292222 7: 1 63 497 1260 2100 2520 5040 %e A292222 8: 1 162 1484 6496 10080 16800 20160 40320 %e A292222 9: 1 255 5154 20916 58464 90720 151200 181440 362880 %e A292222 10: 1 637 13680 95640 322560 584640 907200 1512000 1814400 3628800 %e A292222 ... %e A292222 T(5, 3) =50 because the partitions are [1^2, 3^1] and [1^1, 2^2] with M_1 numbers 20 = A036038(5, 4) and 30 = A036038(5, 5), respectively, adding to 50. %t A292222 b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]]; %t A292222 t[n_, k_] := If[n*k == 0, If[n == k, 1, 0], n!*b[n, 1, k]]; %t A292222 Table[Table[t[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* _Jean-François Alcover_, Sep 29 2017, after _Alois P. Heinz_ *) %Y A292222 Cf. A036038, A130534 (M_2 triangle = |Stirling1|), A008277 (M_3 triangle = Stirling2), A226874 (M_1 triangle including empty partition). %K A292222 nonn,tabl,easy %O A292222 1,3 %A A292222 _Wolfdieter Lang_, Sep 29 2017