A292224 Irregular triangle read by rows. T(n, k) gives the number of admissible k-tuples from the interval of integers [0, 1, ..., n-1] starting with smallest tuple member 0.
1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 3, 2, 1, 4, 4, 1, 1, 4, 4, 1, 1, 5, 6, 2, 1, 5, 6, 2, 1, 6, 11, 8, 2, 1, 6, 11, 8, 2, 1, 7, 15, 14, 4, 1, 7, 15, 14, 4, 1, 8, 19, 20, 8, 1, 1, 8, 19, 20, 8, 1, 1, 9, 27, 39, 24, 5, 1, 9, 27, 39, 24, 5, 1, 10, 33, 54, 44, 16, 2, 1, 10, 33, 54, 44, 16, 2, 1, 11, 39, 69, 62, 26, 2, 1, 11, 39, 69, 62, 26, 2
Offset: 1
Examples
The irregular triangle begins: n\k 1 2 3 4 5 6 7 ... 1: 1 2: 1 3: 1 1 4: 1 1 5: 1 2 6: 1 2 7: 1 3 2 8: 1 3 2 9: 1 4 4 1 10: 1 4 4 1 11: 1 5 6 2 12: 1 5 6 2 13: 1 6 11 8 2 14: 1 6 11 8 2 15: 1 7 15 14 4 16: 1 7 15 14 4 17: 1 8 19 20 8 1 18: 1 8 19 20 8 1 19: 1 9 27 39 24 5 20: 1 9 27 39 24 5 21: 1 10 33 54 44 16 2 22: 1 10 33 54 44 16 2 23: 1 11 39 69 62 26 2 24: 1 11 39 69 62 26 2 ... The first admissible k-tuples are (blanks within a tuple are here omitted): n\k 1 2 3 4 ... 1: [0] 2: [0] 3: [0] [0,2] 4: [0] [0,2] 5: [0] [[0,2], [0,4]] 6: [0] [[0,2], [0,4]] 7: [0] [[0,2], [0,4], [0,6]] [[0,2,6], [0,4,6]] 8: [0] [[0,2], [0,4], [0,6]] [[0,2,6], [0,4,6]] 9: [0] [[0,2], [0,4], [0,6], [0,8]] [[0,2,6], [0,2,8], [0,4,6], [0,6,8]] [0,2,6,8] 10: [0] [[0,2], [0,4], [0,6], [0,8]] [[0,2,6], [0,2,8], [0,4,6], [0,6,8]] [0,2,6,8] ... The first admissible k-tuples for prime k-constellations are: n\k 1 2 3 4 5 6 ... 1: [0] 2: [0] 3: [0] [0,2] 4: [0] [0,2] 5: [0] [0,2] 6: [0] [0,2] 7: [0] [0,2] [[0,2,6], [0,4,6]] 8: [0] [0,2] [[0,2,6], [0,4,6]] 9: [0] [0,2] [[0,2,6], [0,4,6]] [0,2,6,8] 10: [0] [0,2] [[0,2,6], [0,4,6]] [0,2,6,8] 11: [0] [0,2] [[0,2,6], [0,4,6]] [0,2,6,8] 12: [0] [0,2] [[0,2,6], [0,4,6]] [0,2,6,8] 13: [0] [0,2] [[0,2,6], [0,4,6]] [0,2,6,8] [[0,2,6,8,12],[0,4,6,10,12]] 14: [0] [0,2] [[0,2,6], [0,4,6]] [0,2,6,8] [[0,2,6,8,12],[0,4,6,10,12]] 15: [0] [0,2] [[0,2,6], [0,4,6]] [0,2,6,8] [[0,2,6,8,12],[0,4,6,10,12]] 16: [0] [0,2] [[0,2,6], [0,4,6]] [0,2,6,8] [[0,2,6,8,12],[0,4,6,10,12]] 17: [0] [0,2] [[0,2,6], [0,4,6]] [0,2,6,8] [[0,2,6,8,12],[0,4,6,10,12]] [0,4,6,10,12,16] 18: [0] [0,2] [[0,2,6], [0,4,6]] [0,2,6,8] [[0,2,6,8,12],[0,4,6,10,12]] [0,4,6,10,12,16] ... ----------------------------------------------------------------------------------------------- T(7, 3) = 2 because Ieven_n = [0, 2, 4, 6], and the only admissible 3-tuples from this interval are [0, 2, 6] and [0, 4, 6]. For example, [0, 2, 4] is excluded because the set B_3 (mod 3) = {0, 1, 2}, thus #{0, 1, 2} = 3 and (p = 3) - 3 = 0, not > 0. These two admissible 3-tuples both have diameter 6 and stand for prime 3-constellations for all n >= 7: p, p + 2, p + 6, and p, p + 4, p + 6. One of the Hardy-Littlewood conjectures is that there are in both cases infinitely many such prime triples. For the first members of such triples see A022004 and A022005.
Links
- Pontus von Brömssen, Table of n, a(n) for n = 1..1296 (rows 1..100)
- Thomas J. Engelsma, Permissible Patterns of Primes, September 2009, Table 2, p. 27.
- D. Hensley and I. Richards, Primes in intervals, Acta Arith. 25 (1974), pp. 375-391.
- Ian Richards, On the incompatibility of two conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem, Bulletin of the American Mathematical Society 80:3 (1974), pp. 419-438.
- A. Schinzel, Remarks on the paper 'Sur certaines hypothèses concernant les nombres premiers', Acta Arithmetica 7 (1961), pp. 1-8.
- A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arithmetica 4,3 (1958), pp. 185-208, Théorème 1, p. 201; erratum 5 (1958) p. 259.
- Wikipedia, Prime k-tuple.
Formula
T(n, k) = number of admissible k-tuples B_k = [0, b_2, ..., b_k] (see the comment above) from the interval of integers Ieven_n:= [0, 2, ..., 2*floor((n-1)/2)].
Comments