This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292225 #18 Aug 21 2025 09:57:54 %S A292225 1,1,2,2,3,3,6,6,10,10,14,14,28,28,41,41,57,57,105,105,160,160,210, %T A292225 210,383,383,531,531,678,678,1343,1343,1923,1923,2482,2482,4402,4402, %U A292225 5849,5849,7824,7824,14064,14064,18292,18292,23981,23981,39745,39745,57307,57307,71639,71639,117846,117846 %N A292225 Row sums of irregular triangle A292224. a(n) gives the total number of admissible tuples starting with 0 in the interval [0, 1, ..., n-1]. %C A292225 This sequence is given in column 2 of Table 2, p. 27, of the Engelsma link. %C A292225 See A292224 for the reason for the repetitions for n = 2*k+1 and n = 2*(k+1) for k >= 0, the definition of "admissible", references, and examples of these admissible k-tuples for n = 1..10 (with k = 1, 2, ..., A023193(n)). %H A292225 Thomas J. Engelsma, <a href="http://www.opertech.com/primes/permissiblepatterns.pdf">Permissible Patterns of Primes</a>, September 2009, Table 2, p. 27. %F A292225 a(n) = Sum_{k=1..A023193(n)} A292224(n, k), for n >= 1. %F A292225 a(2*n+1) = a(2*n) + A023189(n+1). - _Pontus von Brömssen_, Aug 21 2025 %Y A292225 Cf. A023189, A023193, A292224. %K A292225 nonn %O A292225 1,3 %A A292225 _Wolfdieter Lang_, Oct 09 2017 %E A292225 Terms a(27) .. a(56) from Engelsma's Table 2 (there are also a(57)..a(62) given but a(62) should be 364545 if a(61) = 364545 is correct). - _Wolfdieter Lang_, Oct 17 2017